
Gravitational-Wave Course Homework Sheet 4

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Guest Lecturer: Jan Steinhoff (jan.steinhoff@hu-berlin.de)
Guest Lecturer: Justin Vines (justin.vines@hu-berlin.de)
Tutor : Lorenzo Speri (lorenzo.speri@hu-berlin.de)
Tutor (corresponding for this sheet) : Stefano Savastano (stefano.savastano@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2020-gravitational-waves/

Homework due date: Homeworks must be uploaded before Monday 11/01/2021 at the following address:
https://moodle.hu-berlin.de/mod/assign/view.php?id=2622752

Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with an overall score within 0, 1, 2.

0 : not sufficient, the student has done less than half of the problems and did not attempt all of them.

1 : sufficient, the student has done more than half of the problems and she/he tried to solve almost all
of them.

2 : good, the student correctly solved almost all the problems.

Recommended readings:

1. Coarse graining and effective field theory (EFT): K. Huang, Quantum Field Theory—From Operators
to Path Integrals, John Wiley & Sons (New York, 1998); in particular chapter 16.

2. Neutron star physics: http://adsabs.harvard.edu/abs/2004Sci...304..536L

3. post-Newtonian approximation and EFT: M. Levi, Rept. Prog. Phys. 83, 075901 (2020);
arxiv:1807.01699.

4. Fokker action: T. Damour, G. Esposito-Farese, Phys. Rev. D 53 5541–5578 (1996); arXiv:gr-
qc/9506063.

Notice

You are required to work on two of the three exercises of your choice for this homework
sheet.

I. COARSE-GRAINING AND POINT-PARTICLES

Compact bodies like neutron stars and black holes can be represented by point-particles in general relativity
at scales that are much larger than their size. This coarse-graining can be understood as “integrating out”
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body-scale degrees of freedom (short-wavelength Fourier modes), but this is difficult to work out in detail
due to the nonlinear nature of the theory. Let us here gain intuition on this point-of-view in Newtonian
theory. Consider a body of size R centered around the position x0, which is described by a mass density
ρ(x) or its Fourier transform ρ̃(k) =

∫
d3x ρ(x) e−ik·(x−x0). The coarse-grained (spatially averaged) density

reads

〈ρ〉 =

∫
d3k

(2π)3
f̃(k) ρ̃(k) eik·(x−x0), (1)

where f̃(k) is a low-pass filter. We take it to be f̃(k) = Θ(kcut/|k| − 1) for definiteness, where Θ is
the Heaviside step function and kcut / 1/R. For simplicity, we do not denote explicitly a possible time
dependence of all quantities.

a) Perform a rescaling by a constant factor C as

k→ Ck, x→ x

C
, x0 →

x0

C
, ρ→ C3ρ, (2)

keeping R or kcut fixed. The idea is to change the characteristic scale of the system, or the unit of
measurement, from R to a larger length scale, say, the orbital separation r of a binary. That is, powers
in C = R

r � 1 correspond to the size of multipole corrections observed at a distance r away from the

body. Work out the multipole expansion of 〈ρ〉 in C = R
r explicitly.

b) What is the significance of the low-pass filter f̃(k) in this calculation? [optional!]

c) The interaction of the body with an external Newtonian gravitational potential φ(x) is given by a term
in the action reading

Sint = −
∫
dtd3x 〈ρ〉φ. (3)

Using the expansion of 〈ρ〉 in C, show that this can be written as an action along a worldline of the
form

Sint = −
∫
dt

[
m(φ)x=x0

+ Cmi(∂iφ)x=x0
+
C2

2
mij(∂i∂jφ)x=x0

+
C3

3!
mijk(∂i∂j∂kφ)x=x0

+O
(
R4

r4

)]
.

(4)
Convince yourself that one can remove the term linear in C by a shift of x0. Remark: The coefficients
mij... can be made tracefree using the vacuum field equations ∂k∂kφ = 0. The multipole corrections in
the action here are important for modeling tidal effects.

d) We can recover eq. (4) more directly: Start from Sint = −
∫
dtd3x ρφ with no average on ρ and plug

in a Taylor expansion for φ(x) around x = x0. Write the result as in eq. (4) and obtain explicit
expressions for the multipoles mij... in terms of ρ(x).

II. 1PN ORBITAL EFFECTIVE ACTION

In the lecture on January 4th, it is demonstrated how to “integrate out” the orbital-scale gravito-magnetic
field Ai(x, t) by either Fokker-action or path-integral approaches. Along these lines, let us here integrate out
the gravito-electric field φ(x, t) from the body-scale action

Sb,φ
eff =

1

8πG

∫
dtd3x

(
φ∆φ− 1

c2
φ∂2

t φ

)
+
∑
a=1,2

∫
dtma

[
−φ(xa(t), t)

(
1 +

3v2
a(t)

2c2

)
− 1

2c2
φ2(xa(t), t)

]
+O(c−4). (5)
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The worldlines of the two bodies are xµa = xµa(t) and for the time component it holds x0
a(t) = ct (the label

a = 1, 2 enumerates the bodies). The velocities are va = dxa/dt and v2
a = va · va. We use boldface for

3-dimensional spatial vectors, e.g. xa = (xia).

a) Let us familiarize ourselves with B. DeWitt’s “condensed notation” introduced in the lecture, which
represents integrals over x by an index contraction and in this sense is an extension of Einstein’s sum-
mation convention to integrals. We assume throughout that boundary/surface terms can be dropped.
We write a function of spacetime coordinates xi, t (a scalar field) as a vector with indices x, t, that is
fxt = f(x, t) or gxt = g(x, t), and introduce the integration convention fxtgxt =

∫
dtd3x f(x, t)g(x, t).

The position of the indices x, t (up or down) does not play a role here. The 3-dimensional Dirac delta
function is denoted as δxx′ = δ(x−x′) = δx′x, the one dimensional one as δtt′ = δ(t− t′), the Laplacian
is defined as ∆xx′ = ∂i∂iδxx′ , and its Green’s function is Gxx′ = −1/(4π|x − x′|). Convince yourself
of the following identities,

δxx′fx′ = fx, ∆xx′fx′ = ∂i∂if(x) = fx′∆x′x, ∆xyGyx′ = δxx′ , (6)

where we omitted a possible time index t on f for brevity. The last equation implies that ∆−1
xx′ = Gxx′ .

Also show that

∆−2
xx′ := ∆−1

xy∆−1
yx′ = − 1

8π
|x− x′|. (7)

Hint: look at ∂i∂i|x− x′|.

b) Show that the action (5) can be written in condensed notation as

Sb,φ
eff =

1

2
φxtMφ

xt,x′t′φ
x′t′ + Jφxtφ

xt, (8)

where

Mφ
xt,x′t′ = Mφ,0

xt,x′t′ +
1

c2
Mφ,1

xt,x′t′ , (9)

Mφ,0
xt,x′t′ =

1

4πG
∆xx′δtt′ , (10)

Mφ,1
xt,x′t′ =

1

4πG
δxx′

∂2δtt′

∂t∂t′
−
∑
a=1,2

∫
dtama δ

xt
a (ta)δx

′t′

a (ta), (11)

Jφxt = −
∑
a=1,2

∫
dtama

(
1 +

3v2
a(ta)

2c2

)
δxta (ta). (12)

and we defined δxta (ta) = δ(x− xa(ta)) δ(t− ta).

c) Demonstrate that the inverse “matrix” of Mφ
xt,x′t′ , defined by Mφ

xt,yτ (Mφ)−1
yτ,x′t′ = δxx′δtt′ , is approx-

imately given by

(Mφ)−1
xt,x′t′ = (Mφ,0)−1

xt,x′t′ −
1

c2
(Mφ,0)−1

xt,yτM
φ,1
yτ,y′τ ′(M

φ,0)−1
y′τ ′,x′t′ +O(c−4), (13)

to first order in 1/c2, and that (Mφ,0)−1
xt,x′t′ = 4πG∆−1

xx′δtt′ . (τ is not the proper time here, just an

integration variable.)

d) Integrate out φxt using the Fokker-action approach: Obtain the equation of motion for φxt from the
action (8) and insert a solution for φxt into the action (8). Express the result in terms of (Mφ)−1

xt,x′t′

and Jφxt for now and denote the result as So,φ
eff = Sb,φ

eff [φ-solution inserted]. Now, let us derive So,φ
eff
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following an alternative approach by performing the path integral over the gravito-electric field φxt,

leading from the body-scale (b) effective action Sb,φ
eff to the orbit-scale (o) one So,φ

eff by

const · exp

(
i

~
So,φ

eff

)
=

∫
Dφ exp

(
i

~
Sb,φ

eff

)
. (14)

Calculate this Gaussian integral (treating the integral over φx,t as an integral over a high-dimensional

vector space), and again express the result in terms of (Mφ)−1
xt,x′t′ and Jφxt. Compare this result for

So,φ
eff to the Fokker-action approach.

e) Finally, plug in eqs. (13) and (12) into the expression that you found for So,φ
eff , expand the condensed

notation into integrals, and simplify them. In this process, drop divergent self-interaction contributions.

Assemble all pieces for the action So
eff = So,kin

eff +So,φ
eff +So,A

eff , with So,kin
eff and So,A

eff given in the lectures1,
and recover the 1PN action describing the orbital dynamics,

So
eff =

∫
dt

[
−m1c

2 −m2c
2 + L

]
, (15a)

L = LN + L1PN +O(c−4), (15b)

LN =
m1

2
v2

1 +
m2

2
v2

2 +
Gm1m2

r
, (15c)

L1PN =
1

8c2
m1v

4
1 +

1

8c2
m2v

4
2 −

G2m1m2(m1 +m2)

2c2r2

+
Gm1m2

c2r

(
3

2
v2

1 +
3

2
v2

2 −
7

2
v1 · v2 −

1

2
v1 · nv2 · n

)
,

(15d)

where r = |x1 − x2|, n = (x1 − x2)/r, and the dependence on the time t was suppressed here. (You
might have to perform partial integrations to remove accelerations from the action.) The integrand L
is the 2-body Lagrangian at 1PN order, also known as the Einstein-Infeld-Hoffman Lagrangian.

f) Argue why one can drop the divergent self-interaction terms, based on the fact that the point-particles
(singular Dirac-delta sources) actually represent objects of finite size (cf. exercise I). [optional!]

III. CENTRAL-FORCE PROBLEM AT 1PN ORDER

Starting from the 1PN-Lagrangian L ≈ LN + L1PN in eq. (15), in the coordinates r1 ≡ x1, r2 ≡ x2 and
velocities v1, v2:

a) Derive the canonical momenta p1 and p2. [Recall from classical mechanics that pa = ∂L/∂va.] Then,
introduce the variables R = r1 + r2, r = r2 − r1, P = (p1 + p2)/2, and p = (p2 − p1)/2, and show
that P is conserved.

b) Obtain the relative-motion Hamiltonian H = p1 · v1 + p2 · v2 − L at 1PN order in the variables r, p,
M = m1 + m2 and ν = m1m2/M

2. [Hint: in carrying out the calculation here and below keep only
terms at 1PN order! It is also strongly suggested to use Mathematica to manipulate long algebraic
expressions.]

c) Compute the binding energy E = H and orbital angular momentum L at 1PN order for circular
orbits. Express the final result for E and L in terms of the velocity v ≡ (MΩ)1/3, where Ω is the

1 These extra contributions read So,kin
eff =

∑
a=1,2

∫
dtma[−c2 + v2

a/2 + v4
a/(8c

2)] and So,A
eff = −4Gm1m2v1 · v2/(c2r).

4



Gravitational-Wave Course Homework Sheet 4

orbital frequency. [Hint: Impose the circular orbit condition and derive the relation between r and Ω.
You will find a few new terms at 1PN order beyond the usual Newtonian relation M/r3 = Ω2. You
might find it convenient to work with Hamilton’s equations in spherical coordinates and choose the
motion to be in the equatorial plane.]

d) Compute the periastron advance at 1PN order for nearly circular orbits. [Hint: It is more convenient
to employ the relative-motion Lagrangian. Use the conservation of energy and angular momentum to
derive the equation for the radial perturbation around a circular orbit and compute the radial frequency
Ωr as function of Ω. The fractional advance of the periastron per radial period is ∆Φ/(2π) = K(Ω)−1,
where K(Ω) = Ω/Ωr.] [optional!]

e) Study the stability of circular orbits using the 1PN Hamiltonian. [optional!]

Consider the polar coordinates (r, φ, pr, pφ) and a perturbation of the circular orbit defined by

pr = δpr ,

pφ = p0
φ + δpφ ,

r = r0 + δr ,

Ω = Ω0 + δΩ ,

where r0, Ω0 and p0
φ refer to the unperturbed circular orbit. Write down the Hamilton equations and

linearize them around the circular orbit solution. You should find

δṗr = −A0 δr −B0 δpφ ,

δṗφ = 0 ,

δṙ = C0 δpr ,

δΩ = B0 δr +D0 δpφ , (16)

where A0, B0, C0 and D0 depend on the unperturbed orbit. Determine explicitly A0, B0, C0 and D0.

Look at solutions of Eqs. (16) proportional to eiσt and find the criterion of stability. [Hint: you should
find that there exists a combination Σ0 of A0, B0, C0 and D0 such that when Σ0 > 0 the orbits are
stable. The innermost stable circular orbit (ISCO) corresponds to Σ0 = 0].

Express Σ0 as function of v = (MΩ)1/3 and show that for any value of the binary mass ratio the ISCO
at 1PN order coincides with the Schwarzschild ISCO. [This is an accident, which does not hold at high
PN orders!]

Finally, show that Σ0 = 0 coincides with Ωr = 0. What is the physical meaning of this result?
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