
Gravitational-Wave Course Homework Sheet 5

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Guest Lecturer: Jan Steinhoff (jan.steinhoff@hu-berlin.de)
Guest Lecturer: Justin Vines (justin.vines@hu-berlin.de)
Tutor : Lorenzo Speri (lorenzo.speri@hu-berlin.de)
Tutor (corresponding for this sheet) : Stefano Savastano (stefano.savastano@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2020-gravitational-waves/

Homework due date: Homeworks must be uploaded before Monday 25/01/2021 at the following address:
https://moodle.hu-berlin.de/mod/assign/view.php?id=2647491

Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with an overall score within 0, 1, 2.

0 : not sufficient, the student has done less than half of the problems and did not attempt all of them.

1 : sufficient, the student has done more than half of the problems and she/he tried to solve almost all
of them.

2 : good, the student correctly solved almost all the problems.

Recommended readings:

1. Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory:
T. Damour, 1609.00354

2. Classical and quantum scattering in post-Minkowskian gravity: T. Damour, 1912.02139

3. Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order:
J. Vines, J. Steinhoff, A. Buonanno, 1812.00956

4. Black Hole Binary Dynamics from the Double Copy and Effective Theory: Z. Bern et al., 1908.01493

5. From Boundary Data to Bound States II: Scattering Angle to Dynamical Invariants (with Twist):
G. Kälin, R. Porto, 1911.09130

I. SCATTERING OF TWO POINT MASSES IN THE FIRST POST-MINKOWSKIAN (1PM)
APPROXIMATION

We have argued that an effective action for two point masses coupled to gravity is given by

S =

∫
d4x
√
−g R

16πG
−
∑
a=1,2

ma

∫
dτa

√
−gµν(xa)ẋµa ẋνa, (1)
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with c = 1. The degrees of freedom are the spacetime metric gµν(x) and the masses’ (arbitrarily
parametrized) worldlines x = xa(τa) with tangents ẋµa = dxµa/dτa; the masses ma are constants. Vary-
ing with respect to (wrt) the metric yields Einstein’s field equation,

Rµν − 1

2
Rgµν = 8πGTµν , (2)

with the effective energy-momentum tensor for the point masses given by

Tµν(x) =
∑
a

ma

∫
dτa

ẋµa ẋ
ν
a√

−ẋ2
δ4(x− xa)√

−g
. (3)

Varying wrt the worldlines yields effective geodesic equations,

ẋνa∇ν
( ẋaµ√
−ẋ2a

)
= 0, (4)

where ∇µ is the covariant derivative for the (appropriately regularized/renormalized) full dynamical space-
time metric.

We can make a post-Minkowskian ansatz for the metric,

gµν = ηµν + hµν +O(G2), (5)

where η is a flat Minkowski metric, and the perturbation h is O(G). It is advantageous to maintain man-
ifest (Lorentz) covariance wrt the background Minkowski spacetime. Henceforth, after defining the metric
perturbation above (with down indices), all index manipulations (raising, lowering, vector squares and dot
products) will be done with η (unless otherwise stated); e.g., hµν = ηµρηνσhρσ. If we also impose the
harmonic/Lorenz/de Donder gauge condition,

Pµνρσ∂νhρσ = 0, Pµνρσ = δ(µρδ
ν)
σ −

1

2
ηµνηρσ, (6)

where P is the (Minkowski) trace-reversal operator (h̄µν = Pµνρσhρσ), then the field equation becomes

�hµν = −16πGPµνρσT ρσ +O(G2), (7)

where � = ∂ρ∂
ρ, with ∂ being the (flat, commuting) covariant derivative for η, and the source becomes

Tµν =
∑
a

ma

∫
dτa ẋ

µ
a ẋ

ν
a δ

4(x− xa) +O(G), (8)

where we now specialize the parameters τa to be proper times wrt the Minkowski metric, ηµν ẋ
µ
a ẋ

ν
a = −1.

The effective geodesic equations become

dṗaµ
dτa

=
ma

2
ẋν ẋρ∂µhνρ(xa) +O(G2), paµ ≡ magµν ẋ

ν
a = maẋaµ +O(G), (9)

where we define the momentum paµ by lowering the index on the tangent ẋµa with the full metric (while in
the last expression ẋaµ = ηµν ẋ

ν
a according to our conventions of using η, and pµa = ηµνpaν below; note that

the difference between ẋa and pa/ma would not matter on the right-hand side of the equation of motion).

(a) Verify that (3) becomes (8) and that (4) becomes (9) under the stated assumptions.

The field equation (7) together with the gauge condition (6) imply that the energy-momentum tensor must
be (approximately) conserved wrt the background flat metric, ∂µT

µν = O(G), and this will be true only if
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the worldlines are unaccelerated (+O(G)). This is indeed implied by the worldlines’ equations of motion
(9), dẋµa/dτa = O(G). The worldlines must then take the form

xµa(τa) = yµa + uµaτa +O(G)

≡ xµa0(τa) +O(G), (10)

where yµa and uµa are constant vectors; ya is the displacement from the origin at τa = 0, and ua is the
zeroth-order 4-velocity, with −1 = u2a = ηµνu

µ
au

ν
a. We can identify pµa0 = mau

µ
a as the momentum of the

incoming state, at τa → −∞.
Plugging (10) for mass 2 into (8), its contribution to Tµν is

Tµν2 = m2u
µ
2u

ν
2

∫
dτ2 δ

4(x− x20) +O(G). (11)

(b) Using the retarded Green’s function for the flat wave operator,

Gret(x, x′) = δ
( (x− x′)2

2

)
×
{

1, x in the future of x′

0, otherwise
, (12)

satisfying

�Gret(x, x′) = −4πδ4(x− x′), (13)

show that the solution to the field equation (7) for the field sourced by mass 2 is

hµν2 (x) = Pµνρσuρ2uσ2
4Gm2

r2(x)
+O(G2), (14)

where

r2(x) =
√

(x− y2)2 + [u2 · (x− y2)]2 (15)

is the distance of the field point x from mass 2’s zeroth-order worldline, in its rest frame.

For the zeroth-order worldlines, xµ10 = yµ1 +uµ1 τ1 and xµ20 = yµ2 +uµ2 τ2, we can choose the parametrizations
such that

yµ1 − y
µ
2 = bµ, b · u1 = b · u2 = 0, (16)

which defines bµ as the vectorial impact parameter separating the zeroth-order worldlines at the points of
mutual closest approach (at τ1 = τ2 = 0). The relative Lorentz factor γ between the masses’ incoming rest
frames is defined by

−u1 · u2 = γ =
1√

1− v2
, (17)

where v is the relative velocity between the incoming rest frames.
Now we can solve the equation of motion (9) for mass 1 as perturbed by the field of mass 2, taking h→ h2

in (9) (dropping the infinite self-field contribution from h1). Everywhere on the right-hand side of (9), we
can take x1 → x10, using the unaccelerated zeroth-order worldline, since the corrections would finally end
up at O(G2). We find the “impulse” (total change in momentum) to be

∆p1µ =
m1

2
uν1u

ρ
1

∫ ∞
−∞

dτ1 ∂µh2νρ

∣∣∣
x=x10(τ1)

+O(G2). (18)
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(c) Simplify the integrand and perform the integral, showing that the impulse is of the form

∆pµ1 = Gm1m2
bµ

b2
f(γ) +O(G2), (19)

and find the function f(γ). What is the impulse ∆pµ2 for mass 2?

The total energy E and the velocity ucm of the center-of-mass frame are defined by

E2 = −(p1 + p2)2 = m2
1 +m2

2 + 2m1m2γ, uµcm =
pµ1 + pµ2
E

. (20)

Here we use pµa = mau
µ
a for the asymptotic incoming momenta, and we reason as though we were in flat

spacetime (at infinity). The individual momenta can be split into components along and orthogonal to ucm
according to

pµ1 = E1u
µ
cm + pµ, p · ucm = 0,

pµ2 = E2u
µ
cm − pµ. (21)

(d) Find an expression for the magnitude |p| of the spacelike vector pµ, giving the equal and opposite
momenta in the cm frame, in terms of m1, m2 and γ.

Note that, if we were to define γ =
−p1 · p2
m1m2

, E, Ea, |p| in terms of the asymptotic outgoing momenta,

p′a = pa + ∆pa, they would all be the same as for the incoming state. (Why?)

(e) Argue that the cm-frame scattering angle is given by

χ =
|∆p1|
|p|

+O(G2), (22)

and find the expression for χ in terms of ma, γ and b.
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