
Gravitational-Wave Course Homework Sheet 5

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Guest Lecturer: Jan Steinhoff (jan.steinhoff@hu-berlin.de)
Guest Lecturer: Justin Vines (justin.vines@hu-berlin.de)
Tutor (corresponding for this sheet) : Lorenzo Speri (lorenzo.speri@hu-berlin.de)
Tutor : Stefano Savastano (stefano.savastano@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2020-gravitational-waves/

Homework due date: Homeworks must be uploaded before Monday 08/02/2021 at the following address:
https://moodle.hu-berlin.de/mod/assign/view.php?id=2673402

Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with an overall score within 0, 1, 2.

0 : not sufficient, the student has done less than half of the problems and did not attempt all of them.

1 : sufficient, the student has done more than half of the problems and she/he tried to solve almost all
of them.

2 : good, the student correctly solved almost all the problems.

Recommended readings:

1. A. Buonanno and T. Damour, Phys. Rev. D59 (1999) 084006.

2. A. Buonanno and T. Damour, Phys.Rev. D62 (2000) 064015.

3. B. F. Schutz and C. M. Will, Astrophys.J.Lett. 291 (1985), L33-L36

4. V. Ferrari and B.Mashhoon, Phys. Rev. D30 (1984), 295

I. BLACK-HOLE QUASI-NORMAL MODES

In the lectures and the previous tutorial session, it was shown that the quasinormal modes (QNMs) of a
Schwarzschild black hole are characterized by complex frequencies ω = ωR + iωI , with ωR and ωI the real
and the imaginary parts, respectively.

(a) Use Table I from arXiv:gr-qc/0411025 to plot ωR and ωI of the quadrupolar mode (l = 2) versus n,
where n is the overtone number that identifies the number of nodes in the radial wavefunction (plus 1
in the reference’s conventions). Use n = 1–12, 20, 30, 40. [Note that the values in Table I correspond
to (ωR,−ωI) in our conventions, given the time-dependence of the QNMs as eiωt.]

Your plot should exhibit some features which could be considered strange according to certain intuition,
interpreting ωR as an oscillation frequency and ωI as a decay rate. For typical systems with a set of
vibrational modes, like a string or an elastic body, both the oscillation frequency and the decay rate increase
with increasing overtone number, i.e. with an increasing number of nodes in the wavefunction. The QNM plot,
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however, shows that ωR is first decreasing with n, then has a zero, and then increases to an asymptotically
constant value. This behavior can be seen as somewhat less mysterious by reinterpreting ωR and ωI as
follows.

(b) Consider a simple damped oscillator with amplitude ψ(t) obeying

ψ̈ + γ0ψ̇ + ω2
0ψ = 0. (1)

Writing the two linearly independent solutions as exp((±iωR − ωI)t), find the relationship between
ωR, ωI and ω0, γ0. Invert this relation, make plots of ω0 and γ0 versus n for the Schwarzschild QNMs
and comment how this interpretation alleviates the above discussion.

II. ON THE EFFECTIVE-ONE-BODY HAMILTONIAN AND DYNAMICS

We have derived in class the mapping between the real PN Hamiltonian and the effective Hamiltonian
using the Hamilton-Jacobi formalism. Here we want to construct the effective-one-body (EOB) Hamiltonian
using a canonical transformation.

Using reduced (or dimensionless) variables Q,P and Ĥeff , the EOB Hamiltonian reads

Ĥeff(Q,P ) = c2

√
A(Q)

[
1 +

1

c2
P2 +

(
A(Q)

D(Q)
− 1

)
1

c2
(N ·P)2

]
, (2)

where N = Q/Q and

A(Q) = 1 +
a1

c2Q
+

a2

c4Q2
+

a3

c6Q3
+ · · · , (3)

D(Q) = 1 +
d1

c2Q
+

d2

c4Q2
+ · · · , (4)

where ai, di are unknown coefficients that will be determined by the mapping to the (reduced) PN Hamilto-
nian

Ĥreal(q, p) = ĤNewt(q, p) +
1

c2
Ĥ1PN(q, p) + · · · , (5)

ĤNewt(q, p) =
1

2
p2 − 1

q
, (6)

Ĥ1PN(q, p) = −1

8
(1− 3ν)p4 − 1

2q
[(3 + ν)p2 + ν(n · p)2] +

1

2q2
, (7)

where q and p are reduced variables, n = q/q and ν = m1m2/(m1 +m2)2, being m1 and m2 the black-hole
masses. At 1PN order the real and effective Hamiltonians are related as

1 +
Ĥreal(q, p)

c2

(
1 + α1

Ĥreal(q, p)

c2

)
=
Ĥeff(Q(q, p), P (q, p))

c2
, (8)

where α1 is an unknown coefficient that will be determined by the mapping. The canonical transformation
at 1PN order is

Qi = qi +
1

c2
∂G1PN

∂pi
, (9)

Pi = pi −
1

c2
∂G1PN

∂qi
, (10)
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with

G1PN(q,p) = (q · p)

[
c1p

2 +
c2
q

]
, (11)

where c1, c2 are unknown coefficients that will be determined by the mapping.

The goal of this exercise is to determine α1, c1, c2 as a function of ν.
Insert the canonical transformation given in Eqs. (9) and (10) in Eq. (8) and expand the latter in PN orders
through 1PN order. By equating terms with the same structures in q, p, derive the equations for the
unknown coefficients α1, c1, c2 and set a2 = a3 = ... = an = d1 = d2 = ... = dn = 0. In this case you should
find that: α1 = ν/2, c1 = −ν/2 and c2 = 1 + ν/2. [Hint: introduce the parameter ε2 ≡ 1/c2, work with the
square of Eq. (8) to get rid of the square root in Eq. (2), and neglect the terms with order higher than O(ε4).

Note that it is sufficient to derive Q ≡ |Q| =
√
QiQi, P ≡ |P| =

√
P i Pi and N ·P = N i Pi as function of

q ≡ |q|, p ≡ |p| and n ·p through 1PN order using the canonical transformation given in Eqs. (9) and (10).]
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