Lecture Recording

Note: These lectures will be recorded and posted onto the IMPRS website

Dear participants,

We will record all lectures on “Making sense of data: introduction to statistics for
gravitational wave astronomy”, including possible Q&A after the presentation,
and we will make the recordings publicly available on the IMPRS lecture
website at:

- https:/ /imprs-gw-lectures.aei.mpg.de /2021-making-sense-of-data/

By participating in this Zoom meeting, you are giving your explicit consent to
the recording of the lecture and the publication of the recording on the course
website.
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Parameter Esumation in L1IGO



[.IGO Parameter Estimation

#  LIGO parameter estimation uses Bayesian methods. Results are quoted as posterior

distributions, or posterior median values and credible intervals.

»  We will show results from the first LVC catalogue, GWTC-1, for illustration. More

recent results can be found in GWTC-2 (arxiv:2010.14527) and GWTC-3

(arxiv:2111.03606).
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[.1GO PE codes

In O1 and O2, LIGO parameter estimation used the LALInference code. This includes
two separate algorithms

LALInferenceMCMC: A Markov Chain Monte Carlo code based on the

Metropolis-Hastings algorithm. Proposal distributions are tuned to features of
the likelihood expected for CBC inspirals.

LALInferenceNest: A bespoke nested sampling algorithm. New live points are
drawn by evolving mini-MCMC chains until an independent point is obtained.

During O3 a new software package, Bilby, was introduced (also with a parallel
implementation, parallel bilby). The sampling algorithms in Bilby are not bespoke.
Instead it uses freely available packages such as dynesty. LALInference was also used
in O3, alongside Bilby. It is anticipated that Bilby will be the primary inference
package for O4 onwards.



LIGO PE results: examples
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LIGO PE results: examples
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LIGO PE results: examples
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examples

[.1IGO PE results
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LIGO PE results: examples

Bayesian methods are also used for tests of general relativity, e.g., to place bounds
on pPN deviations in the observed waveform.
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Population Inference



Population Inference

LIGO employs Bayesian hierarchical models to constrain the parameters of the
astrophysical population from which the sources are drawn.

Examples

Cosmological parameter inference: estimation of the Hubble constant or other
cosmological parameters from sets of events (see lecture 6).

Rate estimation: estimation of the rate of mergers of different types occurring in
the Universe, and its evolution with redshift.

Source population properties: inference on the distribution of masses and spins
of black holes etc.



Rate Estimation

Alternative approach to rate estimation - simultaneously model foreground and
background distributions and try to measure rates.

Data is a set of observed statistic values, x;, e.g., max template SNR, evidence etc.
Each event has an (unknown) flag, f; labelling it as either foreground (f; =1) or

background (f; =0).
Foreground and background events are Poisson distributed with rates

dN dNy
dz

dN 2
= R+ f(x,05) d—; = Rpb(z, 6,)

and corresponding cumulative distributions F'(z, @ ), B (x,0p).
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Rate estimation: GW150914

Rate estimation requires foreground distribution. This was complicated for
GW150914 by the presence of another, lower significance event, LVT151012.
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Number of events above threshold
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sophisticated population models.

Rate esttmation: GWTC-3

With more events, can simultaneously constrain rate and more
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Population inference: masses

Infer mass distribution of black holes by using hierarchical models with different
forms for the mass prior.

Simplest model is a power law

C(ml)ml_o‘qﬁq if Mpin < mo < m1 < Mpax
p(m17m2|mminammaxaa76q) X :
0 otherwise

LIGO analysis of GWTC-1 used two variants
- A: minimum mass fixed to 5 solar masses, flat in mass ratio;
- B: all parameters allowed to vary.

The LVC GWTC-1 analysis also used a power law-+peak model designed to identify an
excess of black holes at the edge of the pair-instability supernova mass gap

p(ma]8) = [(1 = M) AO)MT O (Mumax — m1) + A B(6) exp (- (M = i) )] S(m1, Mumin, 5m)

2
207,

p(Q|m1,9) = C(m1, 9)q5q5(m2,mmin, (5m).



MASSCS

Population inference

LVC BBH properties from GWTC-1 (2019)
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Population inference: masses
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Population inference: masses

Using the 76 events that comprise GWTC-3 it was possible (and necessary) to fit a
wider variety of models (arxiv:2111.03634). These included one additional
parametric model (power-law + dip + peak), and three non-parametric models.

- power-law + spline: modify the truncated power-law mass function by an
arbitrary perturbation modelled as a cubic spline

p(ml ‘047 Mmin, Mmax; 5m7 {fz}) =k p(ml |047 Mmin, Mmax; 5m> eXp[f(mlez})]

- flexible mixtures: model the distribution as a sum of separable components.
Model the distribution over masses and spins simultaneously:.

p(M7Q781Z782Z‘9 Zw’& M’MZ ) '1, ) (S ’/'%7 ’L )G(S2Z|:uzsz7 ) (q’Oéqu = 1)

- binned Gaussmn process: construct bins in the mass-mass plane, regard the
rates in each bin as unknown parameters, which are connected through the
specification of a Gaussian process mean and covariance.
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Population inference: masses
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Population inference: spins

Describe spin magnitude distribution using a Beta distribution (support is in the

desired range [0,1]).
p(a'z"oéav Ba) ==

—  Mixture

LVC BBH properties from GWTC-1 (2019)
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Population inference: spins

Can also use a non-parametric model where
the fraction of spin magnitudes in different
bins are the hyperparameters, e.g., 3-bin p(a) =

A1/3 OSCL<1/3
Ay/3 1/3 < a < 2/3
e s e

model.
4 [sotropic
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Population inference: spins

Probe binary formation mechanisms by constraining spin distribution as a
combination of an isotropic component, and a preferentially aligned component.

e Gaussian (G): ( = 1.

LVC BBH properties from GWTC-1 (2019)

e Mixture (M): 0 < ¢ < 1.
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Population inference: mass-spin correlations

Probe correlations between parameters by fitting joint distributions, or allowing
model parameters to depend on other parameters. In the analysis of GWTC-3, the
LVK explored the variation of the spin distribution with mass ratio.

P(Xeft|q) X exp

(Xeff o M(Q))Q_

B o ) B
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where i(q) = po + a(g — 1)
logy0(q) = logig 00 + S(g — 1).
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Population inference: rate evolution
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Population inference: rate evolution

GWTC-3 shows some evidence for rate evolution, with the rate higher in the past.
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Model selection



Model selection

Bayesian inference is also used for model
selection based on the evidence ratio or
Bayes factor.

Example applications to LIGO include

* test for presence/absence of
gravitational radiation after the merger
of a binary neutron star;

* test of GW polarisation - tensor versus
scale or vector polarisations.

LVC, Phys. Rev. X9 011001 (2019)

We determine the relative evidence for two models: that
the on-source data are described by Gaussian noise only, or
by Gaussian noise plus a GW signal as described in
Refs. [151,152]. We find that the Gaussian noise model
is strongly preferred, with a Bayes factor (evidence ratio) of
256.79 over the signal model. This result is consistent with
both prompt collapse to a BH and with a postmerger signal
that 1s too weak to be measurable with our current
sensitivity. We further characterize the absence of a

‘LVC, Phys. Rev. D 100 104036 (2919)\

The Bayes factors (marginalized likelihood ratios) obtained in
this case are 12 + 3 for tensor vs vector and 407 + 100 for tensor
vs scalar, where the error corresponds to the uncertainty due to
discrete sampling in the evidence computations. These values
are comparable to those from GW 170814, for which the latest
recalibrated and cleaned data (cf. Sec. II) yield Bayes factors
of 30 + 4 and 220 + 27 for tensor vs vector and scalar respec-
tively.?> Values from these binary black holes are many orders
of magnitude weaker than those obtained from GW170817,
where we benefited from the precise sky-localization provided

by an electromagnetic counterpart [8].




Model selection

+ Tests of no-hair property: use
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Model selection

Another example: Probing dynamical gravity with the polarisation of continuous
gravitational waves, Isi et al. (2017) Phys. Rev. D 96 042001. (not yet a LIGO search).
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Source reconstruction



BayesWave

The BayesWave pipeline uses a Bayesian non-parametric approach to
reconstruct noise and signal components from the data.

The smooth noise PSD component is modelled using a cubic spline.

Lines in the instrumental noise are modelled using Lorentzian functions.

1 b
T (x —m)? + b

p(x;b,m) =

The remaining components of the data are modelled using wavelets,
which resolve time series at particular times and frequencies. BayesWave
uses the Morley-Gabor basis.

There is a coherent wavelet component for sources and incoherent
components to represent glitches.



BayesWave
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Rapid localisation



Bayestar

Bayesian techniques are also used to obtain

rapid sky localisation of GW transients to
send triggers to astronomers for EM
follow-up.

Bayestar employs the autocorrelation
likelihood (likelihood evaluated at MLE
parameter values)

- : e
exp —5 pr = qu;% {e_z%zi (Tz)}

Rapid marginalisation over parameters

other than sky location achieved via

integral approximation and look-up tables.

Result is a sky map probability density. Singer & Price (2015)




Bayestar
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[ . AlL.Inference Burst

LALInference Burst is another tool for rapid

source localisation. The signal is modelled e B N — .
g Lo Lo : ::':::::::: Lo
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(Time Segments] (Strain Data)

A\

Omicron
There is also an online version of LIB, that
mixes frequentist and Bayesian techniques.
LIB is used to compute Bayes factors for the (Single-FO Trigs)
signal versus noise hypothesis (BSN) and for
coherent versus incoherent triggers across !

detectors (BCI). (Coincidence)  (Signal Model)  (Noise Model)

oLIB, along with CWB, were the first / \ \ /

(O—lag Trigsj [Timeslide Trigsj (Likelihood Ratio)

algorithms to detect GW150914, as they were \ / \
the online online algorithms running at the ‘
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Lynch et al. (2017)




