Lecture Recording

Note: These lectures will be recorded and posted onto the IMPRS website

Dear participants,

We will record all lectures on “Making sense of data: introduction to statistics for
gravitational wave astronomy”, including possible Q&A after the presentation,
and we will make the recordings publicly available on the IMPRS lecture
website at:

- https:/ /imprs-gw-lectures.aei.mpg.de /2021-making-sense-of-data/

By participating in this Zoom meeting, you are giving your explicit consent to
the recording of the lecture and the publication of the recording on the course
website.



Making sense of data: introduction to statistics for
gravitational wave astronomy

Lecture 9: stochastic processes and sensitivity curves
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Principles of signal analysis

Gravitational wave detectors are intrinsically noisy. The output s(#) will consist of a
(possible) signal k() plus noise fluctuations n(#).

s(t) = h(t) + n(t)

The noise is a random process.

Future values are not uniquely determined by initial data, but evolves according to
some probabilistic model.

We suppose the random process is drawn from an ensemble of random processes
characterised by probability distributions

pN(nN,tN; . ;ng,tg; nl;tl)an S dngdnl



Principles of signal analysis

We typically make various useful assumptions about the properties of a random
process

- Stationarity: A stationary process is one for which the probability distributions
depend only on time differences, not absolute time.

pN(nN,tN + 75...;N2,09 + T, 115 81 +7‘) :pN(nNatNE---3”27t2§n1§t1) VT

- Gaussianity: A process is Gaussian if and only if all of its (absolute) probability
distributions are Gaussian.
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- Ergodicity: An ensemble of stationary random processes is ergodic if for any
process n(t) drawn from the ensemble, the new ensemble {n(t+KT): K an
integer} has the same probability distributions.



Principles of signal analysis

We are interested in how large the random fluctuations are about the mean value.
We’ll assume this is zero here, which can be arranged by a subtracting a constant.

The fluctuations can be characterised by the power in a certain time interval -T/2 < ¢

< T/2
T/2
/ n(t)|?dt

S

For stationary random processes this increases linearly with time. So, we instead use
the mean power (or mean square fluctuations)

T/ ;
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Principles of signal analysis

Defining np(t) = n(t)I||t| < T /2| and using Parseval’s theorem we have

/T/2 [n(t)Pdt:/m [nT(t)P:/OO \’ﬁ,T(f)\Qdfzg/Ooo ()2
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This motivates defining the spectral density, S.(f), via

T/2
15 S - / n(t) exp(2mift)dt

T — 00 T —T/2

This is the one-sided spectral density which assumes the time series is real and we
only consider positive frequencies. The two-sided spectral density is half this.



Principles of signal analysis

The spectral density represents the power in the process at a particular frequency

P.= | " S

If we consider the evolution of the process over a time interval At, with
corresponding bandwidth A f = 1 / At, the mean square fluctuations in # at that
frequency are

N/2 (n+1)At :
Anan NP = tim = S | [ aweerisoa] = 220 < s.()ag
n=—N/2 nAt

The root mean square fluctuations at frequency f and measured over a time At are just

N AT = (G




Principles of signal analysis

The auto-correlation function of a (zero mean) time series is defined by

C'(t) = lim & /T/2 n(t)n(t + 7)dt

T'— 00 T —T/2

For an ergodic (and hence stationary) random process this is equivalent to the
expectation value over the ensemble

C(r) = (n(t)n(t + 7))

The auto-correlation function is the Fourier transform of the spectral density (the
Wiener-Khinchin theorem).



Principles of signal analysis

» For stationary processes a consequence of the Wiener-Khinchin theorem is that

(2" (f)n(f)) = Su(£)O(f = f)

»  Examples of spectral densities include

* where ~ denotes the Fourier transform, and * denotes complex conjugation.

white noise spectrum S, (f) = const.

flicker noise spectrum S, (
random walk spectrum S, (

f
f

) X
) X

1/f
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Principles of signal analysis

Can also define a cross-spectral density between two separate random process n(t)
and m(t)

o [ (772 T/2
i i < / n(t) exp(—2mi ft)dt / m(t) exp(2mi ft')dt
T—)OOT —T/2 —T/2

Similarly we can define the cross-correlation between two time series
1 T/2
Crm(7) = lim — n(t)m(t + 7)dt
T'—00 T _T /2

As in the case of a single process, these are related to each other via a Fourier
transform.



Principles of signal analysis

For a Gaussian, stationary random process the spectral density conveys all the
information about the statistical properties of the process.

For gravitational wave detectors, it is natural therefore to plot the spectral density to
characterise the detector sensitivity. But - how then do we represent sources on the
same diagram?

There is no unique way to do this. Different types of source are best represented in
different ways.



Signal sensitivity: Bursts

A transient burst of gravitational waves can be characterised by its frequency, f, its
duration, At, its bandwidth, Af , and its mean square amplitude, a proxy for signal
power

o 1 At ; ,
B= h(t)|“dt = h

The square root of this defines the characteristic amplitude of the burst, /..

The power in the noise in the same bandwidth is

AfSn(f)



Signal sensitivity: Bursts

The square root of the ratio of the signal power to the noise power is the signal-to-
noise ratio.

Bl
N/ AfSu(f)  AfSu(Y)

This is a measure of detectability. If we window and bandpass the time series, this is

the ratio of the root-mean-square signal contribution to the root-mean-square noise
contribution.

For a broad-band burst with A f ~ f, the signal-to-noise ratio is approximately

2
N fSn(f)
This motivates plotting f Si(f) instead of the power spectral density. Height above
this curve is a measure of burst detectability.




Signal sensitivity: continuous waves

Consider now a monochromatic GW source

h(t) — h() eXp(QWif0t>

The signal power is constant over time and given by
I 1
P, = lim h(t)|*dt = §h§

However, this power is concentrated at fy. With finite time series of length T we can
resolve frequency to a precision

Af ~1/T

Noise power in this bandwidth is S, (f)/T"



Signal sensitivity: continuous waves

This motivates representing sensitivity by plotting

SR (/D arec s ptie i s

where Pihresh is the estimated threshold S/N needed for detection. This is the strain
spectral density.

Advantage: for a monochromatic source, height above curve gives expected S/N or,
with specified threshold, an easy assessment of whether source is detectable or not.

Disadvantage: must specify length of observation. Not appropriate for ongoing
experiments, e.g., LIGO. But can produce this after each observing run.



Signal sensitivity: continuous waves
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Signal sensitivity: continuous waves
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Signal sensitivity: continuous waves

SNRs also depend on the sky position and orientation of a source. This can be
folded into the spectral density be using a sky and orientation averaged sensitivity, and
using the strain of an optimally positioned and oriented source.



Signal sensitivity: inspiraling sources

For an inspiraling source, the total energy emitted in each frequency band is finite
and so is the Fourier transform.

Hence

Mf)=0 as T — oo

3~

and so the spectral density is zero (over all time).

Band passing and windowing can recover some of the power, but can we do better
than this?

Yes, using filtering.



Filtering

A filtered time series is defined using a kernel K(t-t').

= /OO K(t —t)s(tdt

We now apply a slightly modified definition of S/IN. We compare the amplitude
output of the filter due to the signal to the rms output of the filter due to the noise.

( S ) 0 2 Kt —t)h(t")dt
\/ < | [ K(t — t)n()dt| >

The rms output of the filter, S+N, is the signal amplitude to within an rms fractional

error N/S, which is the reciprocal of the signal to noise ratio.



Opumal filter

+  We can ask what choice of filter maximises the value of S/N at zero-lag, i.e., t=0.

<+  From the convolution theorem for Fourier transforms we have

w(f) = K(f)h(f)

# The expression for S/N can thus be written

S JE(H)Af)df
N TIEG) S




Opumal filter

This motivates a natural inner product, (h; | hy), on the space of signals of the form
. ~

(hy|hy) =2 /O " )k, (f;;fl)ll (f)ha(f)

in terms of which we have

df

S (ShK|h)
N V/(ShK|S»K)

which is maximised by the choice

R(f) o g;{;)

This is the Weiner optimal filter. In the frequency domain the optimal kernel is

equal to the signal weighted by the spectral density of the noise.



Opumal filter

A search using the optimal filter then amounts to taking the inner product (s | h) of
the data stream, s, with a template of the signal, h. This is matched filtering.

The signal to noise ratio of a matched filtering search is

S ] (hih) hih)l/2
A — —
[ ] \/<(h‘11) (h|11)> ( ‘ )

which follows from the fact that

(hi[n)(h[n)) = (hy|hy)

For a monochromatic source, the matched filter is just a Fourier transform, so this
agrees with the previous result. In that case, the signal to noise ratio increases like
the square root of the observation time.



Opumal filter

The matched filtering (S/N)? is

ORTE

which can also be written as

B * fIh(f)I * f2h(f)I?
— | = dilngfi=— d In
(N> ’ o Su(f) 4 4/0 fSu(f) )

These expressions aid “integration by eye” in a logarithmic plot.

For a source which has amplitude hy at frequency f and corresponding frequency
derivative f, we have
ho

h(f) ~ -

7



Characteristic Strain

The analogy with a broad-band burst therefore motivates the definition of a
characteristic strain, h,, for inspiraling sources (e.g., Finn and Thorne 2000).

2 £2
df /dt

hc:hO

The characteristic strain is a measure of the SNR accumulated while the frequency
sweeps through a bandwidth equal to frequency. If we also plot the rms noise in a
bandwidth equal to frequency,

WD =VFED (5) = e
f—2f Lo |

Plots of h.(f)and h,(f)allow us to see directly how the SNR of an evolving
source builds up over the evolution.




Characteristic Strain

In the definition of characteristic strain

2 2
df /dt

he = hg
the term inside the square root is equal to the number of cycles the inspiral spends in
the vicinity of the frequency f.

You will read papers in which people talk about S/N being enhanced by the number
of cycles spent in the vicinity of a certain frequency. This is what they mean.

Note: plotting characteristic strain only makes sense if you are also plotting f Si(f). If
you are plotting Si(f) directly your strain should be a factor of v/ f lower.



Characteristic Strain
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Representing stochastic backgrounds

Stochastic backgrounds are characterised by a spectral density, so it is natural to

compute the power spectral density and plot it on the same axes as the detector
PSD.

There are two caveats.

* Firstly, the “power” we have been talking about so far has not been a power in a
physical sense since we have not specified any unites for the time series (and
indeed for GW strain this is dimensionless). Better to use something that
represents a physical energy density if possible.

* Plotting two PSDs does not convey any information about their distinguishability.
Can we represent backgrounds in a way that allows the reader to assess
detectability at a glance?



Representing stochastic backgrounds

The energy density carried by a gravitational wave is

dE
dtd A

Therefore, we should consider the time derivative of the strain series to get a
physical energy:.

ochi—l—hi

The corresponding spectral density is f2 Si(f) and fluctuations in a bandwidth equal
to frequency are f3 Si(f).

Energy densities in astrophysical and cosmological backgrounds are often expressed
as a fraction of the closure density of the Universe

OQow = X th(Q;(f)




Representing stochastic backgrounds

Suppose background is generated by an astrophysical population of sources with
coming volume density N(z). Then, total energy density in background today is

SGWZ/O peC*QawdIn f = / / 1iz if}?’fdff

We deduce (Phinney 2001, astro-ph/0108028)

P = TS R(P) = [ 2) (fr

dz
d ) o= (1+2)



Representing stochastic backgrounds

Quick assessment of background detectability can be derived from power-law
sensitivity curves (Thrane & Romano 2013). Requires assumptions about data
analysis procedures.

S
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Sensitvity curves: summary

To summarise, there are four different types of sensitivity curve you might see in
figures.

Power Spectral Density - summarises statistical properties of noise
Sn(f)
Strain spectral density
S, ( f ) / " - for monochromatic sources

fS,(f) - forinspirals and bursts

Energy spectral density - for backgrounds

f*8n(f)



Example: compact binary inspirals

For Keplerian binaries we have

M=M+M, pu= riMy = roMs = pr E=—-——

The period is

2
e (%) _ (2nf)? = %

The quadrupole moment can be estimated
My Mo
(M + Ms)s

_4
3

I ~ pr? cos 2wt ~ W
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/| Centre of Mass

From which we deduce
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Example: compact binary inspirals

From this we obtain

Sais
W~ M1M2 : w% — MC%W% M. — Ml5 M25
(M7 + Ms)s . (M1-|-M2)%
For an individual source we have
L | e s i 2 el
h(f) — 5M06f 6 hc(f) DMC f g
For a background generated by inspiring binaries we have instead
dE
— ~ M, 3 £3 Qaw(f) ~ M 3f /
U df e (1+2 %

Which yields the alternative scaling

~ awD/f ~ MEFE SuF) ~ Qaw(f)/ £ ~ M



