Lecture Recording * Note: These lectures will be recorded and posted onto the IMPRS website - Dear participants, - * We will record all lectures on "Making sense of data: introduction to statistics for gravitational wave astronomy", including possible Q&A after the presentation, and we will make the recordings publicly available on the IMPRS lecture website at: - https://imprs-gw-lectures.aei.mpg.de/2021-making-sense-of-data/ - * By participating in this Zoom meeting, you are giving your explicit consent to the recording of the lecture and the publication of the recording on the course website. # Making sense of data: introduction to statistics for gravitational wave astronomy #### Lecture 9: stochastic processes and sensitivity curves AEI IMPRS Lecture Course Jonathan Gair jgair@aei.mpg.de * Gravitational wave detectors are intrinsically noisy. The output s(t) will consist of a (possible) signal h(t) plus noise fluctuations n(t). $$s(t) = h(t) + n(t)$$ - * The noise is a random process. - * Future values are not uniquely determined by initial data, but evolves according to some probabilistic model. - * We suppose the random process is drawn from an ensemble of random processes characterised by probability distributions $$p_N(n_N, t_N; \dots; n_2, t_2; n_1; t_1) dn_N \dots dn_2 dn_1$$ - We typically make various useful assumptions about the properties of a random process - *Stationarity*: A stationary process is one for which the probability distributions depend only on time differences, not absolute time. $$p_N(n_N, t_N + \tau; \dots; n_2, t_2 + \tau; n_1; t_1 + \tau) = p_N(n_N, t_N; \dots; n_2, t_2; n_1; t_1) \ \forall \tau$$ - *Gaussianity*: A process is Gaussian if and only if all of its (absolute) probability distributions are Gaussian. $$p_N(n_N, t_N; \dots n_1; t_1) = A \exp \left[-\frac{1}{2} \sum_{j=1}^N \sum_{k=1}^N \alpha_{jk} (n_j - \bar{n}_j) (n_k - \bar{n}_k) \right]$$ - *Ergodicity*: An ensemble of stationary random processes is ergodic if for any process n(t) drawn from the ensemble, the new ensemble $\{n(t+KT): K \text{ an integer}\}$ has the same probability distributions. - * We are interested in how large the random fluctuations are about the mean value. We'll assume this is zero here, which can be arranged by a subtracting a constant. - * The fluctuations can be characterised by the power in a certain time interval -T/2 < t < T/2 $$\int_{-T/2}^{T/2} |n(t)|^2 \mathrm{d}t$$ * For stationary random processes this increases linearly with time. So, we instead use the mean power (or mean square fluctuations) $$P_n = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |n(t)|^2 dt$$ * Defining $n_T(t) = n(t) \mathbb{I}[|t| < T/2]$ and using Parseval's theorem we have $$\int_{-T/2}^{T/2} [n(t)]^2 dt = \int_{-\infty}^{\infty} [n_T(t)]^2 = \int_{-\infty}^{\infty} |\tilde{n}_T(f)|^2 df = 2 \int_{0}^{\infty} |\tilde{n}_T(f)|^2 df$$ $$P_n = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} [n(t)]^2 = \lim_{T \to \infty} \frac{2}{T} \int_0^{\infty} |\tilde{n}_T(f)|^2 df$$ * This motivates defining the spectral density, $S_n(f)$, via $$S_n(f) = \lim_{T \to \infty} \frac{2}{T} \left| \int_{-T/2}^{T/2} n(t) \exp(2\pi i f t) dt \right|^2$$ * This is the **one-sided spectral density** which assumes the time series is real and we only consider positive frequencies. The **two-sided spectral density** is half this. * The spectral density represents the power in the process at a particular frequency $$P_n = \int_0^\infty S_n(f) \mathrm{d}f$$ * If we consider the evolution of the process over a time interval Δt , with corresponding bandwidth $\Delta f=1/\Delta t$, the mean square fluctuations in n at that frequency are $$\left[\Delta n(\Delta t, f)\right]^2 \equiv \lim_{N \to \infty} \frac{2}{N} \sum_{n=-N/2}^{N/2} \left| \frac{1}{\Delta t} \int_{n\Delta t}^{(n+1)\Delta t} n(t) \exp(2\pi i f t) dt \right|^2 = \frac{S_n(f)}{\Delta t} = S_n(f) \Delta f$$ * The root mean square fluctuations at frequency f and measured over a time Δt are just $$\Delta n(\Delta t, f)_{\rm rms} = \sqrt{S_n(f)\Delta f}$$ The auto-correlation function of a (zero mean) time series is defined by $$C(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} n(t)n(t+\tau)dt$$ * For an ergodic (and hence stationary) random process this is equivalent to the expectation value over the ensemble $$C(\tau) = \langle n(t) n(t+\tau) \rangle$$ * The auto-correlation function is the Fourier transform of the spectral density (the Wiener-Khinchin theorem). * For stationary processes a consequence of the Wiener-Khinchin theorem is that $$\langle \tilde{n}^*(f)\tilde{n}(f')\rangle = S_n(f)\delta(f-f')$$ - * where ~ denotes the Fourier transform, and * denotes complex conjugation. - * Examples of spectral densities include white noise spectrum $$S_n(f) = \text{const.}$$ flicker noise spectrum $S_n(f) \propto 1/f$ random walk spectrum $S_n(f) \propto 1/f^2$ * Can also define a **cross-spectral density** between two separate random process n(t) and m(t) $$S_{nm}(f) = \lim_{T \to \infty} \frac{2}{T} \left[\int_{-T/2}^{T/2} n(t) \exp(-2\pi i f t) dt \right] \left[\int_{-T/2}^{T/2} m(t) \exp(2\pi i f t') dt' \right]$$ Similarly we can define the cross-correlation between two time series $$C_{nm}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} n(t)m(t+\tau)dt$$ * As in the case of a single process, these are related to each other via a Fourier transform. - * For a Gaussian, stationary random process the spectral density conveys all the information about the statistical properties of the process. - * For gravitational wave detectors, it is natural therefore to plot the spectral density to characterise the detector sensitivity. But how then do we represent sources on the same diagram? - * There is no unique way to do this. Different types of source are best represented in different ways. ### Signal sensitivity: Bursts * A transient burst of gravitational waves can be characterised by its **frequency**, f, its **duration**, Δt , its **bandwidth**, Δf , and its mean square amplitude, a proxy for signal power $$\bar{P}_h = \frac{1}{\Delta t} \int_0^{\Delta t} |h(t)|^2 dt = h_c^2$$ - * The square root of this defines the **characteristic amplitude** of the burst, h_c . - * The power in the noise in the same bandwidth is $$\Delta f S_n(f)$$ # Signal sensitivity: Bursts * The square root of the ratio of the signal power to the noise power is the signal-to-noise ratio. $$\left(\frac{S}{N}\right)^2 = \frac{\bar{P}_h}{\Delta f S_h(f)} = \frac{h_c^2}{\Delta f S_h(f)}$$ - * This is a measure of detectability. If we window and bandpass the time series, this is the ratio of the root-mean-square signal contribution to the root-mean-square noise contribution. - * For a broad-band burst with $\Delta f \sim f$, the signal-to-noise ratio is approximately $$\left(\frac{\mathbf{S}}{\mathbf{N}}\right)^2 = \frac{h_c^2}{fS_h(f)}$$ * This motivates plotting $f S_h(f)$ instead of the power spectral density. Height above this curve is a measure of burst detectability. Consider now a monochromatic GW source $$h(t) = h_0 \exp(2\pi i f_0 t)$$ * The signal power is constant over time and given by $$P_h = \lim_{T \to \infty} \int_{-T/2}^{T/2} |h(t)|^2 dt = \frac{1}{2} h_0^2$$ * However, this power is concentrated at f_0 . With finite time series of length T we can resolve frequency to a precision $$\Delta f \sim 1/T$$ * Noise power in this bandwidth is $S_n(f)/T$. * This motivates representing sensitivity by plotting $$\sqrt{S_n(f)/T}$$ or $\rho_{\text{thresh}}\sqrt{S_n(f)/T}$ - * where $\rho_{\rm thresh}$ is the estimated threshold S/N needed for detection. This is the strain spectral density. - * Advantage: for a monochromatic source, height above curve gives expected S/N or, with specified threshold, an easy assessment of whether source is detectable or not. - Disadvantage: must specify length of observation. Not appropriate for ongoing experiments, e.g., LIGO. But can produce this after each observing run. LISA Pre-Phase A report (1998) * SNRs also depend on the **sky position** and **orientation** of a source. This can be folded into the spectral density be using a *sky and orientation averaged sensitivity,* and using the strain of an optimally positioned and oriented source. $$\langle S_h(f) \rangle_{\rm SA}^{LIGO} \approx 5S_h(f)$$ $$\langle S_h(f) \rangle_{\mathrm{SA}}^{LISA} \approx \frac{20}{3} S_h(f)$$ ### Signal sensitivity: inspiraling sources - * For an inspiraling source, the total energy emitted in each frequency band is finite and so is the Fourier transform. - * Hence $$\frac{1}{\sqrt{T}}\tilde{h}(f) \Rightarrow 0 \quad \text{as} \quad T \to \infty$$ - * and so the spectral density is zero (over all time). - * Band passing and windowing can recover some of the power, but can we do better than this? - * Yes, using filtering. #### Filtering * A filtered time series is defined using a **kernel** K(t-t'). $$w(t) = \int_{-\infty}^{\infty} K(t - t')s(t')dt'$$ * We now apply a slightly modified definition of S/N. We compare the amplitude output of the filter due to the signal to the rms output of the filter due to the noise. $$\left(\frac{S}{N}\right)(t) = \frac{\int_{-\infty}^{\infty} K(t - t')h(t')dt'}{\sqrt{\left\langle \left| \int_{-\infty}^{\infty} K(t - t')n(t')dt' \right|^2 \right\rangle}}$$ * The rms output of the filter, S+N, is the signal amplitude to within an rms fractional error N/S, which is the reciprocal of the signal to noise ratio. - * We can ask what choice of filter maximises the value of S/N at zero-lag, i.e., t=0. - * From the convolution theorem for Fourier transforms we have $$\tilde{w}(f) = \tilde{K}(f)\tilde{h}(f)$$ * The expression for S/N can thus be written $$\frac{S}{N} = \frac{\int \tilde{K}(f)\tilde{h}(f)df}{\sqrt{\int |\tilde{K}(f')|^2 S_h(f')df'}}$$ * This motivates a natural inner product, $(\mathbf{h}_1 | \mathbf{h}_2)$, on the space of signals of the form $$(\mathbf{h}_1|\mathbf{h}_2) = 2\int_0^\infty \frac{\tilde{\mathbf{h}}_1(f)\tilde{\mathbf{h}}_2^*(f) + \tilde{\mathbf{h}}_1^*(f)\tilde{\mathbf{h}}_2(f)}{S_h(f)} df$$ in terms of which we have $$\frac{S}{N} = \frac{(S_h K | h)}{\sqrt{(S_h K | S_h K)}}$$ * which is maximised by the choice $$\tilde{K}(f) \propto \frac{h(f)}{S_h(f)}$$ * This is the **Weiner optimal filter**. In the frequency domain the optimal kernel is equal to the signal weighted by the spectral density of the noise. - * A search using the optimal filter then amounts to taking the inner product (s | h) of the data stream, s, with a **template** of the signal, h. This is **matched filtering**. - * The signal to noise ratio of a matched filtering search is $$\frac{S}{N}[\mathbf{h}] = \frac{(\mathbf{h}|\mathbf{h})}{\sqrt{\langle (\mathbf{h}|\mathbf{n})(\mathbf{h}|\mathbf{n})\rangle}} = (\mathbf{h}|\mathbf{h})^{1/2}$$ which follows from the fact that $$\langle (\mathbf{h}_1|\mathbf{n})(\mathbf{h}_2|\mathbf{n})\rangle = (\mathbf{h}_1|\mathbf{h}_2)$$ * For a monochromatic source, the matched filter is just a Fourier transform, so this agrees with the previous result. In that case, the signal to noise ratio increases like the square root of the observation time. * The matched filtering $(S/N)^2$ is $$\left(\frac{\mathbf{S}}{\mathbf{N}}\right)^2 = 4 \int_0^\infty \frac{|\tilde{h}(f)|^2}{S_h(f)} \mathrm{d}f$$ which can also be written as $$\left(\frac{S}{N}\right)^{2} = 4 \int_{0}^{\infty} \frac{f|\tilde{h}(f)|^{2}}{S_{h}(f)} d \ln f = 4 \int_{0}^{\infty} \frac{f^{2}|\tilde{h}(f)|^{2}}{fS_{h}(f)} d \ln f$$ - * These expressions aid "integration by eye" in a logarithmic plot. - * For a source which has amplitude h_0 at frequency f and corresponding frequency derivative \dot{f} , we have $$\tilde{h}(f) \sim \frac{h_0}{\sqrt{\dot{f}}}$$ #### Characteristic Strain * The analogy with a broad-band burst therefore motivates the definition of a characteristic strain, h_c , for inspiraling sources (e.g., Finn and Thorne 2000). $$h_c = h_0 \sqrt{\frac{2f^2}{\mathrm{d}f/\mathrm{d}t}}$$ * The characteristic strain is a measure of the SNR accumulated while the frequency sweeps through a bandwidth equal to frequency. If we also plot the rms noise in a bandwidth equal to frequency, $$h_n(f) \equiv \sqrt{f \langle S_h(f) \rangle_{SA}}$$ $$\left(\frac{S}{N}\right)_{f \to 2f}^2 = \left[\frac{h_c(f)}{h_n(f)}\right]^2$$ * Plots of $h_c(f)$ and $h_n(f)$ allow us to see directly how the SNR of an evolving source builds up over the evolution. #### Characteristic Strain * In the definition of characteristic strain $$h_c = h_0 \sqrt{\frac{2f^2}{\mathrm{d}f/\mathrm{d}t}}$$ - * the term inside the square root is equal to the number of cycles the inspiral spends in the vicinity of the frequency *f*. - * You will read papers in which people talk about *S*/*N* being enhanced by the number of cycles spent in the vicinity of a certain frequency. This is what they mean. - * Note: plotting characteristic strain only makes sense if you are also plotting $f S_h(f)$. If you are plotting $S_h(f)$ directly your strain should be a factor of \sqrt{f} lower. #### Characteristic Strain Build up of SNR for EMRIs observed by LISA (Finn & Thorne 2000) - * Stochastic backgrounds are characterised by a spectral density, so it is natural to compute the power spectral density and plot it on the same axes as the detector PSD. - * There are two caveats. - Firstly, the "power" we have been talking about so far has not been a power in a physical sense since we have not specified any unites for the time series (and indeed for GW strain this is dimensionless). Better to use something that represents a physical energy density if possible. - Plotting two PSDs does not convey any information about their distinguishability. Can we represent backgrounds in a way that allows the reader to assess detectability at a glance? * The energy density carried by a gravitational wave is $$\frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}A} \propto \dot{h}_{+}^{2} + \dot{h}_{\times}^{2}$$ - Therefore, we should consider the time derivative of the strain series to get a physical energy. - * The corresponding spectral density is f^2 $S_h(f)$ and fluctuations in a bandwidth equal to frequency are f^3 $S_h(f)$. - * Energy densities in astrophysical and cosmological backgrounds are often expressed as a fraction of the closure density of the Universe $$\Omega_{\rm GW} = \frac{8\pi G}{3H_0^2} \frac{\mathrm{d}E_{\rm GW}}{\mathrm{d}\ln f} \propto f^2 h_c^2(f)$$ * Suppose background is generated by an astrophysical population of sources with coming volume density N(z). Then, total energy density in background today is $$\mathcal{E}_{GW} = \int_0^\infty \rho_c c^2 \Omega_{GW} d\ln f = \int_0^\infty \int_0^\infty N(z) \frac{1}{(1+z)} \frac{dE}{df} f \frac{df}{f} dz$$ We deduce (Phinney 2001, astro-ph/0108028) $$\rho_c c^2 \Omega_{GW} = \frac{\pi}{4} \frac{c^2}{G} f^2 h_c^2(f) = \int_0^\infty \frac{N(z)}{1+z} \left(f_r \frac{dE}{df_r} \right)_{|f_r = f(1+z)} dz$$ Quick assessment of background detectability can be derived from power-law sensitivity curves (Thrane & Romano 2013). Requires assumptions about data analysis procedures. #### Sensitivity curves: summary - * To summarise, there are four different types of sensitivity curve you might see in figures. - Power Spectral Density summarises statistical properties of noise $$S_n(f)$$ Strain spectral density $$S_n(f)/T$$ - for monochromatic sources $$fS_n(f)$$ - for inspirals and bursts Energy spectral density - for backgrounds $$f^3S_n(f)$$ # Example: compact binary inspirals * For Keplerian binaries we have $$M = M_1 + M_2$$ $\mu = \frac{M_1 M_2}{M_1 + M_2}$ $r_1 M_1 = r_2 M_2 = \mu r$ $E = -\frac{M \mu}{2r}$ The period is $$\omega^2 = \left(\frac{2\pi}{T}\right)^2 = (2\pi f)^2 = \frac{M}{r^3}$$ * The quadrupole moment can be estimated $$I \sim \mu r^2 \cos 2\omega t \sim \frac{M_1 M_2}{(M_1 + M_2)^{\frac{1}{3}}} \omega^{-\frac{4}{3}}$$ From which we deduce $$h \sim \frac{\ddot{I}}{D} \sim \frac{1}{D} \frac{M_1 M_2}{(M_1 + M_2)^{\frac{1}{3}}} \omega^{\frac{2}{3}}$$ $$\dot{E} \sim \ddot{I}^2 \sim \mu^2 M^{\frac{4}{3}} \omega^{\frac{10}{3}}$$ ### Example: compact binary inspirals From this we obtain $$\dot{\omega} \sim \frac{M_1 M_2}{(M_1 + M_2)^{\frac{1}{3}}} \omega^{\frac{11}{3}} = M_c^{\frac{5}{3}} \omega^{\frac{11}{3}}$$ $M_c = \frac{M_1^{\frac{3}{5}} M_2^{\frac{3}{5}}}{(M_1 + M_2)^{\frac{1}{5}}}$ For an individual source we have $$\tilde{h}(f) \sim \frac{1}{D} M_c^{\frac{5}{6}} f^{-\frac{7}{6}}$$ $$h_c(f) \sim \frac{1}{D} M_c^{\frac{5}{6}} f^{-\frac{1}{6}}$$ For a background generated by inspiring binaries we have instead $$f\frac{\mathrm{d}E}{\mathrm{d}f} \sim M_c^{\frac{5}{3}} f^{\frac{2}{3}}$$ $$\Omega_{\text{GW}}(f) \sim M_c^{\frac{5}{3}} f^{\frac{2}{3}} \int_0^\infty \frac{N(z)}{(1+z)^{\frac{1}{3}}} dz$$ Which yields the alternative scaling $$h_c(f) \sim \sqrt{\Omega_{\rm GW}(f)}/f \sim M_c^{\frac{5}{6}} f^{-\frac{2}{3}}$$ $$S_h(f) \sim \Omega_{\rm GW}(f)/f^3 \sim M_c^{\frac{5}{3}} f^{-\frac{7}{3}}$$