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Part IV: Advanced topics in statistics (OPTIONAL)

9 Time Series

We encountered the notion of a time series, or stochastic process, in Section ?? when we
discussed modelling of the noise in gravitational wave detectors. In this section we will
described some more general properties of time series, and several families of time series that
might be encountered when analysing data. The basic idea of a time series if that it is an
ordered sequence of random variables, such that each subsequent value depends on (in the
sense of being correlated with) previous values. There are two main types of time series

• Available data are part of a random sequence {Xt}, which is only defined at integer
values of the time t.

• Available data are values of a random function, X(t), that is defined for arbitrary
t ∈ R, but is only observed at a finite number of times.

Random functions can be represented as random sequences, e.g., by integrating or averaging,
but in general this throws away information, so where possible it is better to treat the function
as continuous when performing an analysis.

We conclude this preamble with some definitions. Let {Xt}t∈T be a stochastic process,
then

1. if E(Xt) <∞, then the mean (or expectation) of the process is

µt = E(Xt).

If µt is non-constant, i.e., it depends on t, then µt is sometimes called the trend.

2. if var(Xt) < ∞ for all t ∈ T , then the (auto)covariance function of the random
process is defined as

γ(s, t) = cov(Xs, Xt) = E {(Xs − µs)(Xt − µt)} , s, t ∈ T

and the (auto)correlation function of the process is defined by

ρ(s, t) =
γ(s, t)

{γ(s, s)γ(t, t)}1/2 , s, t ∈ T .

Note that var(Xt) =cov(Xt, Xt) = γ(t, t) and |ρ(s, t)| ≤ 1 for all s, t ∈ T from the
Cauchy-Schwarz inequality. In addition, the function γ(s, t) is semi-positive definite,
i.e., ∑

aiajγ(ti, tj) ≥ 0

for any {a1, . . . , ak} ∈ R and any {t1, . . . , tk}.

9.1 General properties of time series

9.1.1 Stationarity

If S is a set, then we use u+ S to denote the set {u+ s : s ∈ S}, and XS to denote the set
of random variables {Xs : s ∈ S. A stochastic process is said to be
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• strictly stationary if for any finite subset S ⊂ T and any u such that u + S ⊂ T ,
the joint distributions of XS and XS+u are the same;

• second-order stationary (or weakly stationary) if the mean is constant and the
covariance function γ(s, t) depends only on |s− t|.

When T = Z = {0,±1,±2, . . .} and the process is stationary

γ(t, t+ h) = γ(0, h) = γ(0,−h) ≡ γ|h| = γh, h ∈ Z,

where h is called the lag. Similarly ρ(t, t + h) ≡ ρ|h| = ρh for h ∈ Z. So, in the stationary
case the covariance and correlation functions are symmetric around h = 0.

In practice, it is impossible to verify strict stationarity and many computations require
only second-order stationarity. Elsewhere in this chapter when we refer to “stationarity” we
will mean second-order stationarity. Third and higher-order stationarity is defined analo-
gously, by extending the definition to third or higher correlation moments. In cases where
there is a trend or seasonality in the data, the time series will often be preprocessed to remove
the trend and leave a stationary stochastic process that can be analysed using methods that
assume stationarity. One way to do this is to use differencing.

9.1.2 Examples of stochastic processes

1. A stochastic process is called white noise if its elements are uncorrelated, E(Xt) = 0
and variance var(Xt) = σ2. If the elements are normally distributed then it is a
Gaussian white noise process, Xt ∼iid N(0, σ2). As all elements of the series are
independent, this is clearly a stationary stochastic process.

2. A random walk is defined by

Xt = Xt−1 + wt, t = 1, 2, . . . .

The expectation value of this process is 0, and the autocorrelation is γh = 1 for all h.
However, it is not a stationary process because var(Xt) is infinite.

9.1.3 Differencing

We define the backshift operator B by BXt = Xt−1 and the first difference of the series
{Xt} by {∇Xt}, where

∇Xt = (I −B)Xt = Xt −Xt−1

and higher-order differences, such as the second difference {∇2Xt} by

∇2Xt = ∇(∇Xt) = ∇(Xt −Xt−1) = Xt − 2Xt−1 +Xt−2

and so on. If Xt = p(t) +wt, where p(t) is a polynomial of degree k and {wt} is a stationary
stochastic process, then {∇kXt} is stationary, i.e., k’th order differencing removes the poly-
nomial trend. For example, first-order differencing reduces a random walk to a stationary
process. This procedure will be exploited when discussing ARIMA processes later in this
chapter. When dealing with observed time-series, it is normal to apply successive differences
to the data until the resulting time series appears to be stationary.
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9.1.4 Causal processes

Suppose that the process {Xt} can be written in the linear form

Xt =
∞∑

j=−∞

ψjwt−j

where {wt} is white noise,
∑ |ψj| < ∞, and ψ0 = 1. The process is called causal if

ψ−1 = ψ−2 = · · · = 0, so the linear expression for Xt does not involve the future values of
wt.

Using the backshift operator B we can write wt−j = Bjwt, so

Xt =
∞∑

j=−∞

ψjB
jwt = ψ(B)wt,

where

ψ(u) =
∞∑

j=−∞

ψju
j

is an infinite series and ψ(B) the corresponding operator. The properties of the polyno-
mial defined here are crucial for determining properties of stationary time series such as
invertibility, as we will see in the following sections.

9.2 Moving-average (MA) processes

One of the most commonly encountered types of stationary stochastic process is a moving
average process. Let {wt} ∼ (0, σ2) be a white noise process for t ∈ Z. Then the time series
{Xt} is said to be a moving average process of order q (denoted MA(q)) if

Xt = wt + θ1wt−1 + · · ·+ θqwt−q

where θ1, . . . , θq are real valued constants.
The mean of Xt is

E[Xt] = E[wt + θ1wt−1 + · · ·+ θqwt−q]

= E[wt] + θ1E[wt−1] + · · ·+ θqE[wt−q] = 0. (120)

Setting θ0 = 1 the autocovariance is

γ(k) = cov(Xt, Xt+k) = E[XtXt+k]− 02

= E[(θ0wt + · · ·+ θqwt−q)(θ0wt+k + · · ·+ θqwt+k−q)]

=

q∑

r=0

q∑

s=0

θrθsE[wt−rwt+k−s]. (121)

This can be simplified by noting

E[wt−swt+k−r] =

{
σ2 if t− r = t+ k − s
0 otherwise (since wt are uncorrelated).
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When r, s ≤ q then t− r 6= t+ k − s for any r, s if |k| > q and so

γ(k) =

{
0 if |k| > q

σ2
∑q−|k|

r=0 θrθr+|k| if |k| ≤ q.

Since the mean is constant and γ(k) does not depend on t, we see that MA(q) is a stationary
stochastic process. The variance is

var(Xt) = γ0 = σ2

q∑

r=0

θ2r

and the autocorrelation function is

ρ(k) =

{
0 if |k| > q∑q−|k|

r=0 θrθr+|k|/
∑q

r=0 θ
2
r if |k| ≤ q.

Note that ρ(k) = 0 for |k| > q. This fact is useful when detecting MA(q) processes in
observed data.

The moving average process is a weighted sum of a finite number of white noise events.
Applications within economics include modelling the effects of strikes on economic output
(the white noise events are the strikes, but the impact on economic output at any given
time is not only due to any current strikes, but also previous strikes), or modelling the sales
of white goods (people replace white goods when they break, and those breakages are the
white noise processes, but people might not all replace immediately, so there will be some
influence of lags).

The autocorrelation function does not convey all information about a moving average
process, since two different moving average processes may have the same auto-correlation
function. This is most easily seen by an example. Consider the two processes

Xt = wt + θwt−1 and Xt = wt +
1

θ
wt−1.

The autocorrelation function of both of these processes is

ρ(1) = ρ(−1) =
θ

1 + θ2
, ρ(k) = 0 for |k| > 1.

However, we can rearrange the first process to give

wt = Xt − θXt−1 + θ2Xt−2 − · · ·

while rearranging the second process we obtain

wt = Xt −
1

θ
Xt−1 +

1

θ2
Xt−2 − · · · .

If |θ| < 1 the series of coefficients converges for the first model and not the second, and vice
versa for |θ > 1. This ambiguity leads to the notion of invertibility.
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9.2.1 Invertible moving average processes

A general MA(q) process {Xt} is said to be invertible if it can be written as a convergent
sum of present and past values of Xt of the form

wt =
∞∑

j=0

πjXt−j

where
∑ |πj| <∞. There is only one invertible MA(q) process associated with each autocor-

relation function ρ(k) and so this notion eliminates the ambiguity identified in the previous
example. To determine if a MA(q) process is invertible we can use the backshift operator
introduced above to write

Xt = wt + θ1wt−1 + · · ·+ θqwt−q

= (1 + θ1B + θ2B
2 + · · ·+ θqB

q)wt

= θ(B)wt (122)

where θ(B) is the polynomial

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q.

Although this polynomial defines an operator, it can be manipulated in the same way as
standard polynomials. In this way, it can be seen that the process is invertible if the roots
of θ(B) all lie outside the unit circle, i.e., all (possibly complex) solutions to θ(z) = 0
have |z| > 1.

Example: The MA(1) model Xt = wt + θ1wt−1 can be written as

Xt = (1 + θ1B)wt ⇒ θ(B) = 1 + θ1B

which has a single root at B = −1/θ1. Therefore the process is invertible if |θ1| < 1.

9.3 Autoregressive (AR) processes

Another commonly encountered type of stationary stochastic process is an auto-regressive
process. Let wt ∼ (0, σ2) for t ∈ Z as in the previous section. The time series {Xt} is said
to be an autoregressive process of order p (denoted AR(p)) if

Xt = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + wt

where α1, α2, . . . , αp are constants. Autoregressive models assume current values of a time
series depend on a fixed number of previous values (plus some random noise). An example
from forensic science is the concentration of cocaine on bank notes in a bundle. Cocaine
transfers between the notes and therefore there will be a correlation between consecutive
notes in the bundle (ordering of the notes in the bundle is a proxy for time in this example).

Example: The autoregressive process of order one is

Xt = α1Xt−1 + wt
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which is closely related to the random walk process defined earlier. Through repeated sub-
stitution we see

Xt = α1(α1Xt−2 + wt−1) + wt = wt + α1wt−1 + α2
1wt−2 + · · ·

so an AR(1) process can be written as in infinite order moving average process. The mean
is

E[Xt] = E[wt + α1wt−1 + α2
1wt−2 + · · · ] = 0

and the autocovariance function is

γ(k) = cov(Xt, Xt+k) = E

[(
∞∑

i=0

αi1wt−i

)(
∞∑

j=0

αj1wt+k−j

)]

= σ2

∞∑

i=0

αi1α
k+i
1 for k ≥ 0 since E[wt−iwt+k−j] = 0 unless j = k + i

=
σ2αk1

(1− α2
1)

if |α1| < 1. (123)

Hence an AR(1) process with |α1| < 1 is stationary, with var(Xt) = γ(0) = σ2/(1− α2
1) and

autocorrelation ρ(k) = γ(k)/γ(0) = α
|k|
1 .

For the general AR(p) process, we can write

Xt − α1Xt−1 − α2Xt−2 − . . .− αpXt−p = wt

(1− α1B − α2B
2 − . . .− αpBp)Xt = wt

φ(B)Xt = wt. (124)

Recall that a time series is causal if there exists ψ(B) = 1 + ψ1B + ψ2B
2 + . . . such that∑∞

i=0 |ψi| <∞ and Xt = ψ(B)wt. From the above result, any such ψ(B) must be the inverse
of φ(B). We deduce that the AR(p) process is causal if and only if all of the roots of the
polynomial φ(u) lie outside the unit circle. If this is true, then the coefficients ψi can be
found from the expansion of the function 1/φ(B) in the usual way.

The mean and covariance of a causal AR(p) process can be found from the decomposition
Xt =

∑
ψiwt−i The mean is clearly zero and the covariance can be found from

γ(k) = cov(Xt, Xt+k)

= E

[(
∞∑

i=0

ψiwt−i

)(
∞∑

j=0

ψjwt+k−j

)]

= σ2

∞∑

i=0

ψiψi+k for k ≥ 0. (125)

The auto-covariance function converges (and hence {Xt} is weakly stationary) if
∑ |ψi|

converges, which was the condition for the series to be causal. So an AR(p) process is
weakly stationary if it is causal.

Example: consider the AR(1) process

Xt = α1Xt−1 + wt.
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This may be written

φ(B)Xt = wt, where φ(B) = (1− α1B).

The root of φ(B) is B = 1/α1, which lies outside the unit circle if |α1| < 1. Therefore, AR(1)
models are causal (and weakly stationary) if |α1| < 1. If this is true then we can write

Xt =
1

φ(B)
wt

= (1− α1B)−1wt

= (1 + α1B + (α1B)2 + . . .)wt

= ψ0wt + ψ1wt−1 + ψ2wt−2 + . . . (126)

with ψi = αi1 for i ∈ {0, 1, 2, . . .}. This agrees with the result obtained previously by repeated
substitution of the original equation.

9.4 Estimating properties of stationary time series

9.4.1 Estimation

Suppose we have observed values x1, . . . , xn of a time series {Xt} at times t = 1, 2, . . . , n.
We suppose that {Xt} is weakly stationary so that E[Xt] = µ, γ(k) and ρ(k) exist. These
three quantities can be estimated as follows

• We estimate µ by the sample mean

x̄ =
1

n

n∑

t=1

xi.

• We estimate γ(k) at lag k by

ck =
1

n− k − 1

n−k∑

t=1

(xt − x̄)(xt+k − x̄).

The estimator ck is called the sample autocovariance coefficient at lag k.

• We estimate ρ(k) at lag k by

rk =
ck
c0
,

and this estimator is referred to as the sample autocorrelation coefficient at lag
k. A plot of rk against k is called a correlogram.

The latter two formulas are only valid if k is small relative to n, roughly k < n/3.
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9.4.2 Tests for a white noise process

If {Xt} is a white noise process (plus possibly a constant mean), then for large n

rk∼̇N(0, 1/n).

To test the hypothesis H0 that the process {Xt} is white noise we can use the values of the
rk’s. Rather than treating each r+k as an independent test statistic, it is better to count the
number of rk’s that exceed a relevant threshold. For example, for a 5% significance test we
compare each |rk| to 1.96/

√
n and count the number, b say, that exceed this value. Under

H0

b∼̇Bin(m, 0.05)

where m is the number of rk’s being computed. Roughly speaking, if b exceeds m/20 then
we would reject H0.

Another test for white noise is the portmanteau test (Box and Pierce 1970; Ljung and
Box 1978). If m� n and n� 1, then

Qm = n(n+ 2)
m∑

h=1

(n− h)−1ρ̂2h∼̇χm.

The sensitivity of Qm to different types of departure from white noise depends on m. If m is
too large, sensitivity is reduced because some of the ρ̂h will contribute no information about
the lack of fit. If m is too small then sensitivity is reduced because some of the ρ̂h that
convey information about the lack of fit are missing.

9.4.3 Testing for stationarity

One common test for stationarity is based on fitting the model

Xt = ξt+ ηt + εt, ηt = ηt−1 + wt, wt ∼iid (0, σ2
w)

where {εt} is assumed to be stationary. If σ2
w > 0 then the sequence is a random walk. If

σw = 0 and ξ = 0 then the series is called level stationary since {Xt} is stationary. If
σw = 0 but ξ 6= 0 it is called trend stationary as then {Xt − ξt} is stationary.

The KPSS test for stationarity is based on a score test for the hypothesis that σ2
w = 0,

leading to

C(l) = σ̂(l)−2
n∑

t=1

S2
t , where St =

t∑

j=1

ej, t = 1, . . . , n,

where e1, . . . , en are the residuals from a straight-line regression to the data, Xt = α+βt+εt,
and σ̂(l)2 is the estimated variance based on residuals truncated at lag l. Under certain
assumptions, C(l) has a tractable asymptotic distribution (integral of a squared Brownian
bridge).

9.4.4 Detection of MA(q) processes

As discussed earlier, ρ(k) = 0 for |k| > q for an MA(q) process. Hence if {Xt} are from a
MA(q) process, we would expect

1. r1, r2, . . . , rq will be fairly close to ρ(1), ρ(2), . . . , ρ(q) (and hence not close to 0).
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2. rq+1, rq+2, . . . will be randomly distributed about zero.

Inspection of the sample autocorrelation coefficients can thus identify moving average pro-
cesses. For example, if |r1| was large but r2, r3, . . . are close to zero, there would be evidence
that is was a MA(1) process.

9.4.5 Detection of AR(p) processes

In an AR(1) process Xt = α1Xt−1 + wt, the autocorrelation function is given by

ρ(k) =
γ(k)

γ(0)
= α

|k|
1 .

Therefore, the sample autocorrelation coefficient, r1, gives an estimate of α1, and the other
sample autocorrelation coefficients should scale like r

|k|
1 . Note that, unlike the MA(q) model,

the coefficients, rk, do not drop to zero above some threshold.
For a general AR(p) process, detecting the order of the process by inspection of the

coefficients is difficult. Instead, to fit the general AR(p) model

Xt =

p∑

i=1

αiXt−i + wt

we can find the coefficients that minimize

1

n

n∑

t=p+1

(
xt −

p∑

i=1

αixt−i

)2

.

The resulting estimates α̂1, α̂2, . . . , α̂p are known as least squares estimates for obvious rea-
sons. The estimate α̂p is also called the sample partial autocorrelation coefficient
at lag p. This provides an estimate of the the autocorrelation at lag p that is not ac-
counted for by the autocorrelation at smaller lags, hence the term “partial”. A plot of the
sample partial autocorrelation coefficients versus lag is called the partial autocorrelation
function (pacf) and is analogous to the correlogram. For an AR(p) process, the partial
autocorrelation coefficients α̂p+1, α̂p+2, . . . should drop to around zero. Hence, they can be
used to estimate the order of an AR process in the same way that the correlogram can be
used to estimate the order of a MA process. The partial autocorrelation coefficient at lag
k is significantly different from zero at the 5% significance level if it is outside the range
(−2/

√
n, 2/

√
n).

9.4.6 Time series residuals

The residuals of a time series are defined as

ŵt = observation − fitted value.

For example, for an AR(1) model, Xt = αXt−1+wt, with observations {xt}, t ∈ {1, 2, . . . , n},
the residuals are given by

ŵt = xt − α̂xt−1,
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where α̂ is the estimate of the parameter α, obtained for example from the least squares
estimation procedure described above. The fitted value at time t is the forecast of xt, made
at time t− 1.

For a model that fits well, the residuals {wt} will be approximately white noise, with
constant variance. There are three standard approaches to assessing time series residuals

1. Plotting the residuals versus time. The residuals should be uncorrelated and randomly
distributed about zero. Any patterns in the data, or significant outliers suggest that
the model is not well fitted.

2. Use the Ljung-Box statistic defined above.

3. Looking at the correlogram of the residuals. Any autocorrelation coefficients lying
outside the range ±2/

√
n can be said to be significantly different from zero at the 5%

significance level.

Note that the residuals are not exactly white noise, so these tests must not be used precisely,
but are guidelines.

9.5 ARMA processes

An ARMA(p, q) process is a combination of an MA(q) and an AR(p) process. The time
series {Xt} is said to be an ARMA(p, q) process if Xt is given by

Xt = α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + wt + θ1wt−1 + . . .+ θqwt−q

where wt ∼ (0, σ2) is a white noise process as usual. Using the backshift operator we can
write the ARMA(p, q) process as

φ(B)Xt = θ(B)wt

where φ(B) = 1−α1B−α2B
2− . . .−αpBp and θ(B) = 1+θ1B+θ2B

2 + . . .+θqB
q. Moving

average, autoregressive and white noise process are all special cases of ARMA models. An
MA(q) process is an ARMA(0, q) model, an AR(p) process is ARMA(p, 0) and white noise
is an ARMA(0, 0) process.

It is useful for ARMA(p, q) models to be both causal and invertible and the conditions
for this are the same as the conditions for invertibility of the MA(q) process and causality
of the AR(p) process, namely

• For an ARMA(p, q) process to be invertible, the roots of θ(B) must lie outside the
unit circle.

• For an ARMA(p, q) process to be causal, the roots of φ(B) must lie outside the unit
circle.

If an ARMA(p, q) process is both invertible and causal then it can be expressed both as an
infinite order moving average process and as an infinite order autoregressive process.

An ARMA(p, q) process is regular if

1. It is both invertible and causal,

2. θ(B) and φ(B) have no common roots.
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The second condition is necessary because if the two functions have a common root, the
process can be simplified to one with fewer terms.

If an ARMA(p, q) process is regular then it maybe written

Xt =
θ(B)

φ(B)
wt = ψ(B)wt

where

ψ(B) =
θ(B)

φ(B)
= ψ0 + ψ1B + ψ2B

2 + . . . =
∞∑

i=0

ψiB
i

with ψ0 = 1 and
∑∞

i=0 |ψi <∞. In other words

Xt = wt + ψ1wt−1 + ψ2wt−2 + . . .

This is an infinite order moving average process and is known as the Wold decomposition
of Xt.

In the same way, it is also possible to express wt in terms of Xt using

wt =
φ(B)

θ(B)
Xt = π(B)Xt =

∞∑

i=0

πiXt−i

where

π(B) =
φ(B)

θ(B)
= 1 + π1B + π2B

2 + . . . =
∞∑

i=0

πiB
i

with π0 = 1. This inversion formula is used in some forecasting methods.
For a regular ARMA(p, q) process we have

ρ(k) =

∑∞
i=0 ψiψi+k∑∞
i=0 ψ

2
i

for k = 1, 2, . . . .

This can be proved as follows. Firstly we note

γ(k) = cov(Xt, Xt+k) = E[XtXt+k]− 0

= E

[(
∞∑

i=0

ψiwt−i

)(
∞∑

j=0

ψjwt+k−j

)]

=
∞∑

i=0

∞∑

j=0

ψiψjE(wt−iwt+k−j). (127)

Now

E[wt−iwt+k−j] =

{
σ2 if j = i+ k
0 otherwise (since wt are uncorrelated.

Therefore

γ(k) = σ2

∞∑

i=0

ψiψi+k

and

γ(0) = σ2

∞∑

i=0

ψ2
i .
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Taking the ratio ρ(k) = γ(k)/γ(0) we deduce the result quoted above.

Example: Consider an ARMA(1,1) process defined by

Xt = αXt−1 + wt + βwt−1

where α, β 6= 0 and {wt} is a Gaussian white noise process. Using the previous notation we
have

φ(B) = (1− αB), θ(B) = (1 + βB).

The process is regular if the roots of φ(B) and θ(B) lie outside the unit circle and there are
no roots in common. This is satisfied if

|α| < 1, |β| < 1 and α 6= −β.
If we now assume that these conditions are satisfied so the process is regular, we can use the
Wold decomposition to obtain the variance and auto-correlation function. First we note

Xt =
1 + βB

1− αBwt
= (1 + αB + α2B2 + . . .)(1 + βB)wt

= [(1 + αB + α2B2 + . . .) + (βB + βαB2 + βα2B3 + . . .)]wt

= [1 + (α + β)B + (α2 + αβ)B2 + (α3 + α2β)B3 + . . .]wt

=
∞∑

i=0

ψiwt−i (128)

where ψi = (α + β)αi−1 for i = 1, 2, . . . and ψ0 = 1. Using this decomposition we can
compute the variance

var[Xt] =
∞∑

i=0

ψ2
i var[wt−i] = σ2

∞∑

i=0

ψ2
i

= [1 + (α + β)2 + (α + β)2α2 + (α + β)2α4 + . . .]σ2

=

[
1 +

(α + β)2

(1− α2)

]
σ2. (129)

The autocorrelation function can be found from the formula

ρ(k) =

∑∞
i=0 ψiψi+k∑∞
i=0 ψ

2
i

.

For example, for k = 1, we have from the variance result
∞∑

i=0

ψ2
i =

[
1 +

(α + β)2

(1− α2)

]
=

1 + 2αβ + β2

1− α2

and note

ψ0ψ1 + ψ1ψ2 + ψ2ψ3 + . . . = (α + β) + [(α + β)2α + (α + β)2α3 + . . .]

= (α + β) +

[
(α + β)2α

1− α2

]
. (130)

Hence we find

ρ(1) =
(α + β)[(1− α2) + (α + β)α]

1 + 2αβ + β2
=

(α + β)[1 + αβ]

1 + 2αβ + β2
.
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9.5.1 ARMA(p, q) with constant mean

The ARMA(p, q) model can be generalised to

Xt = c+ α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + wt + θ1wt−1 + . . .+ θqwt−q

or equivalently
φ(B)Xt = c+ θ(B)wt

where c 6= 0. This is called an ARMA(p, q) model with constant mean. By letting

µ =
c

1− α1 − α2 − . . .− αp
= E[Xt]

the problem may be converted to a model with no constant term by considering

Yt = Xt − µ.

We can see that

φ(B)Yt = φ(B)(Xt − µ) = φ(B)Xt − φ(B)µ

= c+ θ(B)wT − c = θ(B)wt (131)

so Yt ∼ARMA(p, q). If the ARMA process is regular then

Yt =
θ(B)

φ(B)
wt = ψ(B)wt

and Xt = Yt + µ, from which we deduce

Xt = µ+
∞∑

i=0

ψiwt−i.

The autocorrelation function ρ(k) is the same for Xt and Yt, as it does not depend on the
value of µ.

9.6 ARIMA processes

The ARMA(p, q) models describe stationary time series, but often an observed time series
{Xt} is not stationary. To fit a stationary model to the data it is necessary to first remove the
non-stationary behaviour, for example if the trend, E[Xt], is not constant. One approach is
to consider differences of the time series, as these will remove polynomial trends as discussed
earlier.

We denote the backward difference operator, (I − B), by ∇. If {Xt} has a trend which
follows a polynomial of degree ≤ d in time, t, then we consider the d-th order difference
process

Wt = ∇dXt = (I −B)dXt.

If the time series {Wt} generated in this way can be modelled using an ARMA(p, q) pro-
cess, then the series is called an autoregressive integrated moving-averaged (ARIMA)
model and is denoted by ARIMA(p, d, q). The process {Wt}may be a zero mean ARMA(p, q)
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process, in which case the trend of the original series, E[Xt], is a polynomial of degree ≤ d−1
and we may write

φ(B)Wt = θ(B)wt.

Alternatively, the process {Wt} may have a constant mean, in which case E[Xt] is a polyno-
mial of degree d and we may write

φ(B)Wt = c+ θ(B)wt with c 6= 0.

If the ARMA(p, q) process that models {Wt} is regular then the polynomials φ(B) and θ(B)
have no roots outside the unit circle. Writing

Φ(B) = φ(B)(I −B)d

we have
Φ(B)Xt = φ(B)(I −B)dXt = φ(B)Wt = θ(B)wt.

The process {Xt} is invertible since the roots of θ(B) lie outside the unit circle and so we
may write

wt =
Φ(B)

θ(B)
Xt = Π(B)Xt = Xt + π1Xt−1 + π2Xt−2 + . . . .

In addition we note that
1 + π1 + π2 + . . . = 0.

This follows from the fact that

Π(B)θ(B) = Φ(B) = φ(B)(I −B)d ⇒ Π(1)θ(1) = 0 ⇒ Π(1) = 0.

The last step follows from the fact that θ(1) 6= 0 since by assumption alll of the roots of
θ(B) lie outside the unit circle. While ARIMA(p, q) processes are invertible, they are not
causal, since (I −B)d has d roots on the unit circle and hence so does Φ(B). Thus the Wold
decomposition cannot be used for ARIMA processes.

Example: Consider the model

Xt = Xt−1 + wt − θwt−1, with 0 < |θ| < 1 and E[Xt] = µ.

We can write
Wt = Xt −Xt−1 = wt − θwt−1

so Wt ∼ARMA(0, 1) and hence Xt ∼ARIMA(0, 1, 1). We have

Φ(B)Xt = θ(B)wt, where Φ(B) = (I −B), θ(B) = I − θB.

We can invert this process to obtain

wt = Π(B)Xt =
I −B
I − θBXt

= (1−B)(1 + θB + θ2B2 + . . .)Xt

= [1− (1− θ)B − (1− θ)θB2 − (1− θ)θ2B3 + . . .]Xt

=
∞∑

i=0

πiXt−i (132)
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where πi = −(1− θ)θi−1. We can also confirm

∞∑

i=1

πi = −(1− θ)
∞∑

i=0

θi = −(1− θ) 1

1− θ = −1 ⇒ 1 +
∞∑

i=1

πi = 0.

9.6.1 ARIMA processes with a constant term

Suppose that we have
φ(B)(I −B)dXt = c+ θ(B)wt,

where c 6= 0. This means that {Xt} has a trend term which is a polynomial of degree d. To
work with such a series we define a new series, {Yt}, as

Yt = Xt − Atd, where A =
c

d!(1− α1 − α2 − . . .− αp)
.

The new series is an ARIMA model without a constant term

φ(B)(I −B)dYt = θ(B)wt

and so can be used for forecasting. Forecasts of Xt can be obtained by adding Atd to the
forecasts of Yt.
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10 Nonparametric Regression

The notes in this section are taken from a lecture course on this topic that I gave previously.
We will not cover all of this material in one lecture, but the detailed notes are provided so
that you can learn about more about the topics that interest you.

10.1 Introduction

10.1.1 Difference between parametric and nonparametric regression

The basis for regression is a set of observations of pairs of variables (Xi, Yi), i = 1, . . . , n.
We are interested in finding a connection between X and Y . We assume that Y is random,
but X can be either random or fixed; we focus mostly on the case that the Xi’s are fixed.
In parametric regression we assume a particular type of dependence of Y on X (e.g. linear
regression: EY = AX, log-linear regression log(EY ) = AX, etc). In other words, we
assume a priori that the unknown regression function f belongs to a parametric family
{g(x, θ) : θ ∈ Θ}, where g(·, ·) is a given function, and Θ ⊂ Rk. Estimation of f is the
equivalent to estimation of the parameter vector θ.

In nonparametric regression, by contrast, we do not want to make any assumption about
how EY depends on X, but want to fit an arbitrary functional dependence. We assume that
we observe a function with error:

Yi = f(Xi) + εi, i = 1, . . . , n.

Often the errors are assumed to be normally distributed, εi ∼ N(0, σ2), independently. The
aim is to estimate the unknown function f .

In nonparametric estimation it is usually assumed that f belongs to some large class F
of functions. For example, F can be the set of all the continuous functions or the set of
all smooth (differentiable) functions. For proving certain properties of estimators, we will
consider sets of functions with k derivatives, which are called Hölder spaces of functions.

We will described several different approaches to nonparametric regression — kernel
smoothing, spline smoothing, general additive models and wavelet estimation.

10.1.2 Nonparametric regression model

Throughout this chapter we will assume the following model of nonparametric regression:

Yi = f(Xi) + εi, i = 1, . . . , n.

with independent errors E(εi) = 0, Var(εi) = σ2 and a function f : [0, 1]→ R.
Now suppose that we observe data (xi, yi), i = 1, . . . , n, which is a realisation of iid

random variables (Xi, Yi). The aim is to estimate the unknown function f(x) = E(Yi|Xi = x),

namely to construct an estimator f̂n(x) for all x ∈ [0, 1] which is consistent and efficient,
and to be able to test hypotheses about f(x0) for a fixed x0 and about f(x) for all x
simultaneously.

The maximum likelihood estimator (MLE) of f(x) gives estimates of f only at points xi
where we observe the data: f̂(xi) = yi. Since E[εi] = 0, this estimator is unbiased at xi, as

Ef̂(xi) = EYi = f(xi). However, the MLE (and the model) does not give any information
about f(x) for x 6= xi. The model is not fully identifiable hence some additional assumptions
about f are needed. A key assumption we will make about f that it is smooth.
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10.1.3 Estimators

There are two major approaches to nonparametric estimation.
1. Smoothing: fitting a flexible smooth curve to data. We will consider two methods:

kernel smoothing and spline smoothing. The main question in this context is how smooth
should this curve be, and do we have to decide that in advance, or can we let the data to
decide?

2. Orthogonal projection estimation: represent the regression function f as a series
in an orthogonal basis, and estimate the coefficients from the data. We will consider wavelet
bases. Wavelets can be spiky, so they are well suited for modelling not very smooth functions,
e.g., with jumps or sharp spikes. The main question is how to estimate the coefficients, so
that the function estimate is neither too smooth nor too spiky.

10.1.4 Consistency

The key requirement for any estimator is consistency, that is, the more data we have, the
closer the estimator is to the function of interest. We encountered consistency in the context
of estimators of parameters, and there is a corresponding definition for functions.

Definition 10.1. f̂n is a (weakly) consistent estimator of f in distance d based on n obser-
vations iff

∀ε > 0, P(d(f̂n, f) > ε)→ 0 as n→∞.
In the rest of this chapter, when we refer to consistency we will mean weak consistency.

We consider two distances on function spaces d(f̂n, f).

1) Pointwise at x0 (local): d(f̂n, f) = |f̂n(x0)− f(x0)|, for some x0 ∈ [0, 1].

2) Integrated (global) : d(f̂n, f) = ||f̂n − f ||2 =
√∫ 1

0
(f̂n(x)− f(x))2dx.

Here || · ||2 is defined by

||g||22
def
=

∫ 1

0

[g(x)]2dx.

It is a norm in Hilbert space L2[0, 1] = {g : [0, 1]→ R such that ||g||2 <∞}.
Markov’s inequality is a tool to verify consistency:

P(d(f̂n, f) > ε) ≤ ε−2E[d(f̂n, f)2].

For these distances, E[d(f̂n, f)]2 has particular names.

1) Mean squared error (MSE):

MSE(f̂n(x0)) = E[|f̂n(x0)− f(x0)|2] = v(x0) + [b(x0)]
2

2) Mean integrated squared error (MISE):

MISE(f̂n) = E[||f̂n − f ||2] = E
[∫ 1

0

|f̂n(x)− f(x)|2dx
]

=

∫ 1

0

v(x)dx+

∫ 1

0

[b(x)]2dx,

where b(x) = bias(f̂(x)) = E
[
f̂(x)

]
− f(x) and v(x) = Var(f̂(x)) are the bias and the

variance of f̂(x).
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Therefore, M(I)SE(f̂n) → 0 as n → ∞ implies consistency in the corresponding distance.
We will also study the rate of convergence of the estimators, that is, how fast MISE and
MSE decrease to 0 as a function of sample size n.

10.1.5 Notation

The indicator function of a set A is

1A(x) =

{
1, if x ∈ A,
0, if x /∈ A.

Informally, we will also write 1(|x| ≤ 1) for 1|x|≤1(x).
Denote the support of a function g, the set of arguments where g is nonzero, by

supp(g) = {x : g(x) 6= 0}.

10.2 Kernel estimators

10.2.1 Designs

Definition 10.2. A set (X1, . . . , Xn) is called a design

Definition 10.3. A design (X1, . . . , Xn) is called fixed if the values x1, . . . , xn are non ran-
dom

Example 10.1. An equispaced (regular) design x1 < x2 < . . . < xn is a fixed design such
that xi − xi−1 = 1/n, e.g. xi = i/n ;xi = i−1

n
; xi = 1

2n
+ i−1

n
.

Definition 10.4. A design (X1, . . . , Xn) is called random iff X1, . . . , Xn are iid random
variables, Xi ∼ p(x).

Example 10.2. xi ∼ U [0, 1] with p(x) = 1 for x ∈ [0, 1].

10.2.2 Nadaraya-Watson estimator

Definition 10.5. A function K(x) is called a kernel iff
∫∞
−∞K(x)d(x) = 1.

If K(x) ≥ 0, K(x) is a probability density.

Definition 10.6. If K(x) = K(−x), then K(x) is a symmetric kernel.

Definition 10.7. A kernel K has order m iff
∫∞
−∞ x

`K(x)dx = 0 for all ` = 1, 2, . . . ,m− 1

and
∫∞
−∞ x

mK(x)dx 6= 0.

If K is symmetric, then K has order ≥ 2.

Example 10.3. All these kernels are symmetric of order 2, except the last one.

a) Uniform (box, rectangular) kernel K(x) = 1
2
1(|x| ≤ 1).

b) Triangular kernel K(x) = (1− |x|)1(|x| ≤ 1).

c) Gaussian kernel K(x) = 1√
2π
e−x

2/2.
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d) Cosine kernel K(x) = π
4

cos(πx/2)1(|x| ≤ 1).

e) Sinc kernel K(x) = sin(πx)
πx

. This kernel has infinite order, since
∫ +∞
−∞ sin(πx)xm−1dx =

0 for all integer m ≥ 1.

Remark 10.1. If K(x) is a kernel, then Kh(x) = 1
h
K
(
x
h

)
is also a kernel. h is called the

bandwidth.

Example 10.4. If K(x) = 1
2
1(|x| ≤ 1) is a kernel then K(x) = 1

4
1(|x| ≤ 2) is a kernel.

Definition 10.8. The Nadaraya-Watson Estimator

f̂NWn (x) =

∑n
i=1 YiKh(Xi − x)∑n
j=1Kh(Xj − x)

, when
n∑

i=1

Kh(Xi − x) 6= 0,

otherwise f̂NWn (x) = 0.

Motivation for the Nadaraya-Watson estimator.

Recall that f(x) can be written as

f(x) = E(Yi | Xi = x) =

∫
yp(y | x)dy =

∫
yp(x, y)

p(x)
dy.

Consider the following kernel density estimators:

p̂n(x) =
1

n

n∑

i=1

Kh(xi − x), p̂n(x, y) =
1

n

n∑

i=1

Kh(xi − x)Kh(yi − y). (133)

Plugging p̂n(x) and p̂n(x, y) into E(Yi|Xi = x), we have

f̂h(x) =

∫ ∞

−∞

yp̂n(x, y)

p̂n(x)
dy.

Now we simplify the numerator, assuming that the kernel is symmetric
∫ ∞

−∞
yp̂n(x, y)dy =

1

n

∫ ∞

−∞
y

n∑

i=1

Kh(xi − x)Kh(yi − y) =
1

n

n∑

i=1

Kh(xi − x)

∫ ∞

−∞
yKh(y − yi)dy,

and the last integral is

1

h

∫ ∞

−∞
yK

(
y − yi
h

)
dy = [z = (y − yi)/h] =

∫ ∞

−∞
(hz + yi)K(z)dz

= yi

∫ ∞

−∞
K(z)dz + h

∫ ∞

−∞
zK(z)dz = yi

assuming that the order of the kernel K is at least 2.
Therefore, an estimator of f can be written as

f̂NWh (x) =
n−1

∑n
i=1Kh(xi − x)yi

n−1
∑n

i=1Kh(xi − x)
1

(
n∑

i=1

Kh(xi − x) 6= 0

)

which coincides with the Nadaraya-Watson estimator. Thus, we proved the following
proposition.
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Proposition 10.1. If K(x) is a symmetric kernel of order ≥ 2, under random design,

f̂NWh (x) =

∫ ∞

−∞

yp̂n(x, y)

p̂n(x)
dy 1(p̂n(x) 6= 0),

where p̂n(x) and p̂n(x, y) are kernel density estimators defined by (133).

If we know p(x), then we can write f̂(x) = 1
np(x)

∑n
i=1 yiKh(xi − x)

If Xi ∼ U [0, 1] then p(x) = 1 and f̂(x) = 1
n

∑n
i=1 yiKh(xi−x). This estimator also works

for a regular fixed design.

Example 10.5. Consider the box kernel K(z) = 0.51(z ∈ [−1, 1]). Then, for x and h such
that |xi − x| ≤ h for at least one i, the Nadaraya-Watson estimator can be written as

f̂NW (x) =

∑n
i=1 h

−1YiK(xi−x
h

)

h−1
∑n

i=1
1
n
K(xi−x

h
)

=

∑n
i=1 Yi

1
2h

1(|xi−x
h
| ≤ 1)∑n

i=1
1
2h

1(|xi−x
h
| ≤ 1)

=

∑
i: |xi−x|≤h Yi∑
i: |xi−x|≤h 1

.

The Nadaraya-Watson estimator is an example of a linear estimator.

Definition 10.9. Estimator f̂(x) is called linear if it can be written as a linear function of y,

i.e. f̂(x) =
∑n

i=1Wi(x)Yi = W T (x)Y where Y = (y1, . . . , yn)T , W (x) = (w1(x), . . . , wn(x))T

and W (x) does not depend on y, only on (x1, . . . , xn).

If an estimator is linear, then it is easy to find its distribution, and hence to construct a
confidence interval and a confidence band (see Section 10.2.8).

Now we study the bias and the variance of the Nadaraya-Watson estimator in two frame-
works, asymptotic as the sample size n grows to infinity, and for a fixed sample size.

10.2.3 Asymptotic properties of the Nadaraya-Watson estimator

As we saw in Section 10.1.4, to study consistency of an estimator, it is sufficient to study
the asymptotic behaviour of its bias and variance. Thus, to study consistency of the NW
estimator, we investigate asymptotic expressions for its bias and variance under the following
assumptions.

Assumptions

1. Asymptotic: n→∞, h→ 0, nh→∞,

2. Design x1, . . . , xn is regular deterministic,

3. x ∈ (0, 1),

4. ∃ f ′′,

5. Kernel:

∫ +∞

−∞
xK(x)dx = 0, 0 < µ2(K)

def
=

∫ +∞

−∞
x2K(x)dx <∞,

||K||22 =

∫ +∞

−∞
[K(x)]2dx <∞.
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In particular, we assume that the unknown function f has a bounded second derivative and
the kernel is of order 2.

A key tool to deriving the asymptotic expressions for the bias and the variance is
approximation of a sum by an integral. Since the design (xi) is regular deterministic, i.e.
xi − xi−1 = 1/n, for any function g(x),

1

n

n∑

i=1

g(xi) ≈
∫ 1

0

g(z)dz.

In particular, the denominator of the NW estimator is

1

n

n∑

i=1

Kh(Xi − x) ≈
∫ 1

0

Kh(z − x)dz =

∫ 1

0

K

(
z − x
h

)
d
(z
h

)
=

∫ 1−x
h

0−x
h
→
K(v)dv

≈
∫ +∞

−∞
K(v)dv = 1

since n→∞, −x/h→ −∞ and (1−x)/h→ +∞ as h→ 0. Here it is important that x 6= 0
and x 6= 1, that is, it is not at the boundary.

Asymptotic bias of the NW estimator: b(x) ≈ µ2(K)h2

2
f ′′(x).

b(x) = Ef̂(x)− f(x) =
n∑

i=1

wi(x)[f(Xi)− f(x)] [Taylor Expansion ]

≈
n∑

i=1

wi(x)

[
f(x) + f ′(x)(Xi − x) + f ′′(x)

(Xi − x)2

2
− f(x)

]

=
n∑

i=1

Kh(Xi − x)∑n
j=1Kh(Xj − x)

[
f ′(x)(Xi − x) + f ′′(x)

(Xi − x)2

2

]

≈ 1

n

[
f ′(x)

n∑

i=1

(Xi − x)Kh(Xi − x) + f ′′(x)
n∑

i=1

Kh(Xi − x)
(Xi − x)2

2

]

≈ f ′(x)

∫ 1

0

(z − x)Kh(z − x)dz + f ′′(x)

∫ 1

0

Kh(z − x)
(z − x)2

2
dz

≈ f ′(x)h

∫ (1−x)/h

−x/h
K(v)vdv + f ′′(x)

h2

2

∫ (1−x)/h

−x/h
K(v)v2dv

≈ f ′(x)h

∫ ∞

−∞
K(v)vdv + f ′′(x)

h2

2

∫ ∞

−∞
K(v)v2dv

=
µ2(K)h2

2
f ′′(x).
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Asymptotic variance of the NW estimator: v(x) ≈ σ2

nh
||K||22:

v(x) = σ2

n∑

i=1

[wi(x)]2 = σ2

n∑

i=1

[Kh(Xi − x)]2

[∑n
j=1Kh(Xj − x)

]2

≈{ 1
n

∑n
i=1Kh(Xi−x)≈1}

σ2

n2

n∑

i=1

[Kh(Xi − x)]2

{ 1
n

∑n
i=1→

∫ 1
0 } ≈

σ2

n

∫ 1

0

[Kh(z − x)]2dz =
σ2

nh

∫ 1

0

[
K

(
z − x
h

)]2
d

(
z − x
h

)

{v= z−x
h } =

σ2

nh

∫ (1−x)/h

−x/h
[K (v)]2 dv ≈ σ2

nh

∫ ∞

−∞
[K (v)]2 dv

=
σ2

nh
||K||22.

Therefore, the asymptotic MISE (AMISE) is:

AMISE =

∫ 1

0

[
|b(x)|2 + v(x)

]
dx ≈

∫ 1

0

[
µ2(K)h2

2
f ′′(x)

]2
dx+

∫ 1

0

σ2

nh
||K||22dx

=
||f ′′||22

4
h4[µ2(K)]2 +

σ2

n

||K||22
h

.

We are in general interested in having the “best” estimator of the function. This can be
interpreted as finding h and K that minimise this error. We start with optimising over the
kernel, introducing canonical kernels.

10.2.4 Canonical Kernel

Given a kernel K(x) of order 2, consider a scale family of kernels:

{
Kδ(x) =

1

δ
K
(x
δ

)
, δ > 0

}

Definition 10.10. The canonical bandwidth, δ0, is defined by

δ0 =

( ||K||22
[µ2(K)]2

) 1
5

,

where µ2(K) =
∫ +∞
−∞ x2K(x)dx and ||K||2 =

√∫ +∞
−∞ [K(x)]2dx.

Then, given a scale family of kernels
{
Kδ(x) = 1

δ
K
(
x
δ

)
, δ > 0

}
, the canonical kernel,

Kδ0 , is

Kδ0(x) =
1

δ0
K

(
x

δ0

)
.

Choosing the canonical kernel in the scale family allows comparison across families of
kernels. For example, we shall see that if we choose a canonical kernel, the optimal bandwidth
does not depend on the kernel.
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Lemma 10.1. For a scale family {Kδ, δ > 0}, the canonical bandwidth δ0 satisfies

||Kδ0||22 = [µ2(Kδ0)]
2.

Proof. We show that if ||Kh||22 = [µ2(Kh)]
2 if and only if h = δ0. Consider separately the

right and left hand sides.

||Kh||22 =

∫ ∞

−∞
[Kh(x)]2 dx =

1

h

∫ ∞

−∞

[
K
(x
h

)]2
d
(x
h

)
=

1

h
||K||22

µ2(Kh) =

∫ +∞

−∞
x2Kh(x)dx = h2

∫ +∞

−∞

(x
h

)2
K
(x
h

)
d
x

h
= h2µ2(K)

Therefore, ||Kh||22 = µ2(Kh)
2 ⇔ 1

h
||K||22 = [h2µ2(K)]

2
which implies that

h =

( ||K||22
[µ2(K)]2

) 1
5

= δ0.

10.2.5 Optimal kernel and optimal bandwidth

We are looking for the kernel and the bandwidth that minimise the asymptotic MISE. The
AMISE is given by

AMISE ≈ ||f
′′(x)||22
4

[
h2µ2(K)

]2
+
σ2

n

||K||22
h

.

For a canonical kernel, the AMISE factorises into a term that depends on bandwidth and a
term that depends on the kernel:

AMISE ≈ ||K||22
[
h4
||f ′′(x)||22

4
+ h−1

σ2

n

]
.

For any kernel, we can also define the optimal bandwidth, hopt, by minimising the
AMISE over h. First, we take a derivative of the AMISE with respect to h:

∂

∂h
AMISE =

[
4h3C1 − h−2

C2

n

]
= 0

where C1 = ||f ′′(x)||22µ2(K)2/4, and C2 = σ2||K||22, which is solved by

hopt =

(
C2

4nC1

) 1
5

=

(
σ2||K||22

n||f ′′(x)||22µ2(K)2

) 1
5

which corresponds to the minimum of AMISE. For a canonical kernel we note that ||K||22 =
µ2(K)2 and so the optimal bandwidth does not depend on the kernel but it does depend on
the unknown function.

Using the optimal bandwidth, the AMISE becomes

AMISE =
5σ

8
5 ||f ′′(x)||

2
5
2

4n
4
5

(√
µ2(K)||K||22

) 4
5
.
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Optimal kernel: choose the kernel K to minimize the AMISE. From the preceding
expression, this corresponds to minimising the quantity

√
µ2(K)||K||22. We note that this

is independent of bandwidth, in the sense that
√
µ2(K)||K||22 =

√
µ2(Kδ)||Kδ||22 for all δ.

However, rescaling by δ in this way will change the corresponding optimal bandwidth, so
that the rescaled kernel with its optimal bandwidth is unchanged. We can use this freedom
to set µ2(K) = 1 (which requires rescaling by δ = 1/

√
µ2(K)). For this choice, minimising

the bandwidth-optimised AMISE is equivalent to minimising ||K||22 under the constraints:

∫
K(x)dx = 1,

∫
xK(x)dx = 0,

∫
x2K(x)dx = 1.

The canonical kernel that minimises ||K||2 under these constraints is

Kopt(x) =
3

4

1√
5

(
1− x2

5

)
1(|x| ≤

√
5).

This kernel is called the Epanechnikov kernel. For the Epanechnikov kernel, ||K||22 = 3/5
√

5
and µ2(K) = 1 by construction, so the optimal bandwidth is

hopt =

(
3σ2

5
√

5n||f ′′(x)||22

) 1
5

.

Therefore, the optimal kernel with the optimal bandwidth, Khopt , is given by

Khopt(x) =
1

hopt
K

(
x

hopt

)
=

3

4

1√
5hopt

(
1− x2

5h2opt

)
1(|x| ≤

√
5hopt),

and the Nadaraya-Watson estimator constructed with this kernel has the smallest AMISE.
The efficiency of a kernel family {Kδ, δ > 0} for a given kernel K is defined as

√
µ2(K) ||K||22√

µ2(Kopt)||Kopt||22
=

√
µ2(Kδ0)||Kδ0||22√
µ2(K

opt

δopt0

)||Kopt

δopt0

||22
=


 µ2(Kδ0)

µ2(K
opt

δopt0

)




5
2

=


 ||Kδ0||22
||Kopt

δopt0

||22




5
4

where δ0 is the canonical bandwidth for this kernel family, Kopt is the Epanechnikov kernel
and δopt0 is its canonical bandwidth. The efficiency to the fourth fifths power gives the ratio
of the AMISE for this family of kernels relative to the optimal kernel family. For many kernel
families, the efficiencies are close to 1, for instance, it is 0.951 for the Gaussian kernel family,
0.930 for the box kernel family and 0.986 for the triangular kernel family.

Note that since the optimal bandwidth depends on the unknown function, this expression
gives a theoretical bound but it is not applicable in practice. One way to avoid dependency
on the unknown function is to take hopt = Cn−1/5 which gives the same order of MISE in n
but not the optimal constant. Another way to find the best h that is used in practice is to
use another approximation of MISE which results in the approach called cross-validation.

10.2.6 Non-asymptotic properties of the Nadaraya-Watson estimator

Nonasymptotic properties of the Nadaraya-Watson estimator can be found in the form of
upper bounds on the absolute value of the bias and the variance, and hence on the MSE
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and MISE. We shall see that the upper bounds are the same functions of the sample size n.
The constants in the upper bounds inform us how the errors depend on other features of the
model, such as the kernel, the smoothness of the function, design, etc.

Before we state the upper bounds, we will define a class of smooth functions, the Hölder
Class Hβ(M). When the parameter β is an integer, the class Hβ(M) contains functions
with β derivatives whose absolute values are bounded by M . However, the class is defined
for arbitrary values β > 0.

Definition 10.11. The Hölder Class Hβ(M) of functions on [0, 1] with β > 0, M > 0 is
defined as the set of functions f that satisfy the following conditions with k = bβc:

1. |f (k)(x)| ≤M for all x ∈ [0, 1],

2. |f (k)(x)− f (k)(y)| 6M |x− y|β−k, ∀x, y ∈ [0, 1],

where f (k) is the kth derivative of f .

If β ∈ (0, 1), k = 0 and f (0)(x) = f(x).

Example: if β = 1, the Hölder class H1(M) contains functions such that |f ′(x)| ≤ M
for all x ∈ [0, 1].

Example: the function f(x) =
√
|x− 0.5|, x ∈ [0, 1], does not have a derivative for all

x ∈ [0, 1] but it belongs to the Hölder class Hβ(M) with β = 1/2 and M = 1 due to the
inequality

|
√
|z| −

√
|y|| 6

√
|z − y| ∀z, y ∈ [0, 1].

Now we derive upper bounds on the absolute value of the bias and the variance of the
Nadaraya-Watson estimator of a function f that belongs to a Hölder class Hβ(M) with
β ∈ (0, 1).

Proposition 10.2. Suppose that f ∈ Hβ(M) on [0, 1], with β ∈ (0, 1] and M > 0. Let f̂NWn

be the Nadaraya – Watson estimator of f .
Assume also that:

a) the design (X1, . . . , Xn) is regular deterministic;

b) var(εi) = σ2;

c) ∃λ0 > 0 such that ∀x ∈ [0, 1],

1

n

n∑

i=1

Kh (Xi − x) ≥ λ0;

d) supp(K) ⊆ [−1, 1] (i.e. K(x) = 0 for x /∈ [−1, 1]),

and ∃Kmax ∈ (0,∞) such that 0 ≤ K(u) ≤ Kmax, ∀u ∈ R.

Then, for all x0 ∈ [0, 1] and h ≥ 1/(2n),

|b(x0)| ≤Mhβ, v(x0) ≤
σ2Kmax

nhλ0
.
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Proof. 1. The bias of the NW estimator when f ∈ HB(M) with β ∈ (0, 1) is:

bias(f̂NW (x)) = E(f̂NW (x))− f(x) =
n∑

i=1

WNW
i (x) [f(xi)− f(x)] .

Note that ∀x,
∑n

i=1W
NW
i (x) = 1, since

∑
Wi(x) =

∑n
i=1Kh(xi − x)∑n
i=1Kh(xi − x)

1
(∑

Kh(xi − x) 6= 0
)

= 1.

Therefore, the bias is given by

bias(f̂NW (x)) =
n∑

i=1

WNW
i (x)[f(xi)− f(x)].

Since the support of K is [−1, 1], the support of Kh(x) = 1
h
K(x/h) is [−h, h], therefore the

sum is only over those i where |xi − x| ≤ h, that is,

|bias(f̂NW (x))| =

∣∣∑
iK(xi−x

h
)(f(xi)− f(x))

∣∣
∑

iK(xi−x
h

)
=

∣∣∣
∑

i: |xi−x|≤hK(xi−x
h

)[f(xi)− f(x)]
∣∣∣

∑
iK(xi−x

h
)

≤
∑

i :|xi−x|≤hK(xi−x
h

) |f(xi)− f(x)|
∑

iK(xi−x
h

)
≤
∑

i :|xi−x|≤hK(xi−x
h

)M |xi − x|β∑
iK(xi−x

h
)

≤ Mhβ,

usingK(z) ≥ 0 for all z. In particular, the bias is small when h is small, that is, bias(f̂NW (x))→
0 if h→ 0. The extension of the proof to β = 1 is left as an exercise.

2. The variance of the NW estimator can be written as

v(x) = Var(f̂NWn (x)) = Var

(
n∑

i=1

wi(x)(Yi)

)
=

n∑

i=1

[wi(x)]2Var(Yi)

since the Yi’s are independent. From assumptions (a) & (b), we know that Var(Yi) = σ2,
since the xi’s are fixed. Therefore,

v(x) = σ2

n∑

i=1

[Kh(Xi − x)]2

[∑n
j=1Kh(Xj − x)

]2

6 σ2
Kmax

h

∑n
i=1Kh(Xi − x)

[∑n
j=1Kh(Xj − x)

]2

6 σ2
Kmax

h

∑n
i=1Kh(Xi − x)

nλ0
∑n

j=1Kh(Xj − x)

=
σ2Kmax

nhλ0

assumption d) K(z) ≥ 0 for all z

assumption d), ∀u,K(u) 6 Kmax implies
Kh(Xi − x) = 1

h
K
(
Xi−x
h

)
6 Kmax

h

assumption c) ∃λ0 > 0 such that ∀x ∈
[0, 1],∑n

i=1Kh(Xi − x) > nλ0.



178 Introduction to Statistics for GWs

Now we consider the bounds on the MSE of the NW estimator. Under the conditions of
Proposition 10.2,

MSE(f̂NWn (x0)) = [bias(f̂NWn (x0))]
2 + Var(f̂NWn (x0)) ≤M2h2β +

σ2Kmax

nhλ0
.

The upper bound on MSE is the smallest if

h = hn =

(
σ2Kmax

2βM2λ0n

)1/(2β+1)

,

and the corresponding MSE bound is

MSE(f̂NWn,hn (x0)) ≤ M2

(
σ2Kmax

2βM2λ0n

)2β/(2β+1)

+
σ2Kmax

nλ0

(
2βM2λ0n

σ2Kmax

)1/(2β+1)

≤ (1 + 2β)M2/(2β+1)

(
σ2Kmax

2βλ0n

)2β/(2β+1)

→ 0 as n→∞.

Hence, the Nadaraya – Watson estimator with h = hn=
(

σ2Kmax

2βM2λ0n

)1/(2β+1)

and kernel K

satisfying conditions of Proposition 10.2, is consistent for estimating functions from Hölder
class Hβ(M) for β ∈ (0, 1].

Example 10.6. (continued) Derive upper bounds on the absolute value of the bias and
the variance of the NW estimator with the box kernel K(z) = 1

2
1(z ∈ [−1, 1]) under the

nonparametric regression model with σ2 = 1 and xi = i/n. Let f ∈ Hβ(M), M = 5,β = 1/2.
Now we verify the assumptions of Proposition 10.2. Assumptions a), b) are satisfied.

Assumption c) is 1
2n

∑
i:|xi−x|≤h

1
h
≥ λ0, h ≥ 1/2n.

Let’s count the number of integers i between 1 and n such that |i/n− x| ≤ h. Since

|i/n− x| ≤ h⇔ (nx− nh) ≤ i ≤ (nx+ nh),

we need to count the number of integers in the interval [nx− nh, nx+ nh].
In general, in an interval [a, a + b] for some b > 0, the number of of integers is bbc if a

is not integer, and it is bbc +1 if a is integer. Here bbc is the lower integer part of b, that
is, the largest integer that is less than or equal to b, e.g. b5c = 5, b7.3c = 7 and b2.8c = 2.

Therefore, the smallest number of integers in the interval [nx − nh, nx + nh] is b2nhc
which is greater than 2nh− 1 since b2nhc ≤ 2nh < b2nhc+ 1 by the definition of the lower
integer part. Hence, we need h > 1/(2n), and then we can take λ0 = 1− 1/(2nh) > 0 since

1

2n

∑

i:|xi−x|≤h

1

h
≥ 2nh− 1

2nh
= 1− 1/(2nh) = λ0

Assumption d) is satisfied with Kmax = 1/2.
Therefore, by Proposition 10.2, for n = 12 and h > 1/24,

|b(x)| ≤Mhβ = 5
√
h, v(x) ≤ 1

2nh(1− 1/(2nh))
=

1

2nh− 1
=

1

24h− 1
.

The corresponding MSE (and MISE) for f̂NW (x) is bounded by

MSE(f̂NW (x)) = b2(x) + v(x) ≤ 25h+
1

24h− 1
.
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The derivative of the upper bound with respect to h is

25− 24

(24h− 1)2

which is zero for h > 1/24 at

hopt =
1

24

(
1 +

√
24

25

)
= 0.0825.

This corresponds to the minimum of the MSE since the second derivative with respect to h
of the upper bound is 2·242

(24h−1)3 which is positive.
Therefore, the optimal bandwidth is 0.0825.

10.2.7 Rates of convergence

We would like to find the estimator of f which is not only consistent, but also achieves the
best possible rate of convergence over some class of functions F , such as the Hölder class
Hβ(M). Now we determine the rate of convergence of the NW estimator, in both local and
global distances, and address the question whether it is possible to achieve a faster rate of
convergence.

Definition 10.12. φn is the convergence rate of an estimator f̂n at point x0 (local
rate of convergence) over a class of functions F , if

0 < c 6 sup
f∈F

E

[
|f̂n(x0)− f(x0)|

φn

]2
6 C <∞,

where constants c and C do not dependent on n, and the rate φn is only related to n and the
function class F .

Similarly, the global rate of convergence of estimator f̂n over a class of functions F is φn
if

0 < c 6 sup
f∈F

E

[
||f̂n − f ||2

φn

]2
6 C <∞,

where the constants c and C do not depend on n, and the rate φn is only related to n and
the function class F .

Recall that ||f̂n(x)− f(x)||2 =
√∫ 1

0
[f̂n(x)− f(x)]2dx.

Definition 10.13. For a class of functions F , φ?n is the local minimax convergence
rate, if

0 < c 6 inf
f̂n

sup
x0∈(0,1)

sup
f∈F

E

[
|f̂n(x0)− f(x0)|

φ?n

]2
= inf

f̂n

sup
x0∈(0,1)

sup
f∈F

MSE(f̂n(x0))

(φ?n)2
6 C <∞,

where the constants c and C do not depend on n, and the rate φ?n is only related to n and
the function class F .
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Similarly, for a class of functions F , φ?n is the global minimax convergence rate, if

0 < c 6 inf
f̂n

sup
f∈F

E

[
||f̂n − f ||2

φ?n

]2
= inf

f̂n

sup
f∈F

MISE(f̂n)

(φ?n)2
6 C <∞,

where constants c and C do not depend on n, and the rate φ?n is only related to n and the
function class F .

Definition 10.14. An estimator f̂n is said to achieve a minimax rate of convergence (local
or global), if the rate of convergence of this estimator is the corresponding (local or global)
minimax rate of convergence.

Now we investigate whether the local rate of convergence for the Nadaraya-Watson esti-
mator is minimax.

Theorem 10.1. Let assumptions of Proposition 10.2 hold for all x ∈ [0, 1]. Then, the NW

estimator f̂NW (x) with h = αn−1/(2β+1) for same α > 0 satisfies

lim
n→∞

sup
x0∈[0,1]

sup
f∈Hβ(M)

E
[(

(f̂n
NW

(x0)− f(x0))n
β/(2β+1)

)2]
≤ C <∞,

where constant C depends only on β,M, σ2, λ0, Kmax, α.

Proof. By Proposition 10.2, ∀f ∈ Hβ(M),∀x ∈ [0, 1],

E
[(
f̂n

NW
(x)− f(x)

)2]
≤ Cn

−2β
2β+1

with C <∞ dependent on Kmax, λ0, β,M, α, σ2 which can be written as

E
[(

(f̂n
NW

(x)− f(x))nβ/2β+1
)2]
≤C.

Taking supremum over f ∈ Hβ(M), x ∈ [0, 1] and n, as n→∞, we have the statement.

Therefore, the pointwise rate of convergence of the Nadaraya-Watson estimator is n−β/(2β+1).
In fact, it can be shown (Tsybakov, 2009, chapter 2) that this is the local minimax rate of
convergence, so the Nadaraya-Watson estimator achieves this minimax rate and so it is in
this sense the “best” estimator, but there do exist other estimators that achieve this rate of
convergence. It is straightforward to show that the NW estimator also achieves the global
minimax rate of convergence.

The upper bounds being used here apply for the Hölder space with β ∈ (0, 1]. For the
Nadaraya-Watson estimator to achieve the minimax convergence rate for β > 1, one needs
to use kernels of higher order. Local polynomial estimators, which will be discussed in
Section 10.2.12 are locally and globally minimax for β > 1.

10.2.8 Inference using a linear estimator

In this subsection we consider the nonparametric regression model

Yi = f(Xi) + εi, i = 1, . . . , n

with independent errors εi ∼ N(0, σ2) and a deterministic design (x1, . . . , xn). These as-
sumptions imply that E(Yi) = f(Xi) and Var(Yi) = σ2.
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10.2.9 Confidence intervals for f(x0) based on a linear estimator

Denote b(x) = bias(f̂(x)) = E
[
f̂(x)− f(x)

]
and v(x) = Var(f̂(x)). Then, for a linear

estimator f̂(x) =
∑n

i=1 Yiwi(x),

E
(
f̂(x)

)
=

n∑

i=1

f(xi)wi(x) = b(x) + f(x)

Var
(
f̂(x)

)
= σ2

n∑

i=1

[wi(x)]2 = v(x),

therefore f̂(x) ∼ N (b(x) + f(x), v(x)).

The variance depends on the weights wi(x) and σ which are known, so it can be calculated
exactly. If we knew the bias, which depends on the unknown function, we could construct
(1− α)100% confidence interval using the fact that the following inequality

−zα
2
6 f̂(x)− [b(x) + f(x)]√

v(x)
6 zα

2

holds with probability 1− α, that is,

f(x) ∈ [f̂(x)− b(x)− zα
2

√
v(x), f̂(x)− b(x) + zα

2

√
v(x)].

Here zα = Φ−1(1− α) where Φ(x) is the cumulative distribution function of N(0, 1).

However, the bias is unknown, so it is not possible to construct the exact confidence
interval. There are two approaches to addressing this issue. The first one is to construct
an asymptotic confidence interval where the estimator is constructed in such a way that
asymptotically the bias is much smaller than the variance, and therefore may be treated as
0. For the NW estimator, this means choosing a smaller bandwidth. The second one is to
use an upper bound on the bias to construct a conservative confidence interval.

• (1− α)100% Conservative Confidence Interval for f(x).

If |b(x)| 6 b0(x) & v(x) 6 v0(x), then

f(x) ∈ f̂(x)±
(
b0(x) + zα

2

√
v0(x)

)
.

• (1− α)100% Asymptotic Confidence Interval for f(x).

Choose the estimator f̂(x) so that b(x)2 � v(x), thus we can assume b(x) ≈ 0:

f(x) ∈ f̂(x)± zα
2

√
v(x).

The asymptotic expression for the variance is often used in this case.
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10.2.10 Confidence intervals using the Nadaraya-Watson estimator

For a Nadaraya-Watson estimator f ∈ Hβ(M) on x ∈ [0, 1], under the conditions of Propo-
sition 10.2,

v(x) 6 σ2Kmax

nhλ0
, |b(x)| 6Mhβ.

Therefore, a (1− α)100% Conservative Confidence Interval for f(x) is

f̂NW (x)±
(
Mhβ + zα/2σ

√
Kmax/(nhλ0)

)

=
[
f̂NW (x)−Mhβ − zα/2σ

√
Kmax/(nhλ0), f̂

NW (x) +Mhβ + zα/2σ
√
Kmax/(nhλ0)

]
.

Alternatively, taking the limit n→∞ and h→ 0,

v(x) ≈ σ2

nh
||K||22, b(x) ≈ µ2(K)h2

2
f ′′(x) ≈ 0.

Therefore, a (1− α)100% Asymptotic Confidence Interval for f(x) is

f̂NW (x)± zα/2σ
√
||K||22/(nh))

=

[
f̂NW (x)− zα/2σ

√
||K||22/(nh), f̂NW (x) + zα/2σ

√
||K||22/(nh)

]
.

10.2.11 Asymptotic Confidence Band for f

Assume that the bias of f̂(x) is much smaller than its standard deviation and is close to 0,
i.e. |b(x)| �

√
v(x) and b(x) ≈ 0. Then, an asymptotic (1−α)100% confidence band based

on the NW estimator is given by
{
f : |f(x)− f̂(x)| 6 cα

√
v(x), ∀x ∈ [a, b]

}

with

cα ≈
√

2 log
( a0
αh

)
, where a0 =

|b− a|
π

||K ′||2
||K||2

,

(see Wasserman, section 5.7). For the NW estimator, we can use v(x) ≈ σ2

nh
||K||22.

Confidence bands can be used to test hypotheses about f , e.g.

H0 : f(x) = constant ∀x ∈ [0, 1].

10.2.12 Local polynomial estimators.

Motivation and definition The Nadaraya-Watson estimator can be viewed as a local
constant least squares approximation of the unknown function. If the kernel K takes only
nonnegative values, then for each x ∈ [0, 1], f̂NWn (x) satisfies

f̂NWn (x) = arg min
θx∈R

{
n∑

i=1

(Yi − θx)2K
(
Xi − x
h

)}

= arg min
θx∈R

{
n∑

i=1

(θ2x − 2θxYi + Y 2
i )K

(
Xi − x
h

)}

= arg min
θx∈R

{
θ2x ·

n∑

i=1

K

(
Xi − x
h

)
− θx · 2

n∑

i=1

YiK

(
Xi − x
h

)
+ CXi,Yi(x)

}
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Therefore, if
∑n

j=1Kh(Xj − x) 6= 0, the value of θx that minimises this weighed sum of
squares coincides with the Nadaraya-Watson estimator:

fNWn (x) =

∑n
i=1 YiKh(Xi − x)∑n
j=1Kh(Xj − x)

.

This estimator can be generalised further by considering a local polynomial rather than
a local constant approximation. For a function f(x), if ∃f (k)(x), then for xi sufficiently close
to x,

f(xi) ≈f(x) + f ′(x)(xi − x) + · · ·+ f (k)(x)

k!
(xi − x)k =

k∑

j=0

f (j)(x)

j!
(xi − x)j

=
k∑

j=0

[
f (j)(x)hj

]
[

1

j!

(
xi − x
h

)j]
= UT

x,iθx

where

θx =
(
f(x), f ′(x)h, f ′′(x)h2, . . . , f (k)(x)hk

)T

Ux,i =

(
1,
xi − x
h

,
1

2!

(
xi − x
h

)2

, . . . ,
1

k!

(
xi − x
h

)k)T

Definition 10.15. A local polynomial estimator of f(x) of order k , denoted LP (k) estima-
tor, is defined by

f̂LPn (x) = θ̂0(x)

where for each x θ̂(x) =
(
θ̂0(x), θ̂1(x), . . . , θ̂k(x)

)T
is the solution of

θ̂(x) = arg min
θx∈Rk+1

{
n∑

i=1

(Yi − UT
x,iθx)

2K

(
Xi − x
h

)}
.

For each m = 1, . . . , k, θ̂m(x)/hm is an estimator of f (m)(x).

Therefore, the local polynomial estimator provides simultaneous estimators not only for
f(x) but also for all existing derivatives of f .

This estimator can be written explicitly. Noticing that the expression to be minimised is
quadratic in the vector θx, we can open the brackets to obtain

θ̂x = arg min
θx

{
n∑

i=1

(Yi − UT
x,iθx)

2K

(
Xi − x
h

)}

= arg min
θx

{
n∑

i=1

(θTxUx,iU
T
x,iθx − 2UT

x,iθxYi + Y 2
i )K

(
Xi − x
h

)}

= arg min
θx

{
θTx ·

n∑

i=1

Ux,iU
T
x,iK

(
Xi − x
h

)
· θx − θTx · 2

n∑

i=1

YiUx,iK

(
Xi − x
h

)
+ CXi,Yi(x)

}

which is equivalent to

θ̂x = arg min
θx

{
θTx ·B(x) · θx − 2θTx · a(x)

}
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where the matrix B(x) and vector a(x) are defined by

B(x) =
1

nh

n∑

i=1

Ux,iU
T
x,iK

(
Xi − x
h

)

=
1

n

n∑

i=1

Ux,iU
T
x,iKh(Xi − x)

a(x) =
1

nh

n∑

i=1

YiUx,iK

(
Xi − x
h

)

=
1

n

n∑

i=1

YiUx,iKh (Xi − x)

Hence, if B(x) is invertible,

θ̂x = B−1(x)a(x).

Therefore, the Local Polynomial estimator can be written as

f̂LPn (x) = θ̂0(x) = eT1B
−1(x)a(x)

where the matrix B(x) and vector a(x) are defined above and eT1 = (1, 0, 0, · · · , 0).

Note that the local polynomial estimator f̂LPn (x) is linear:

fLPn (x) = eT1B
−1(x)a(x) = eT1B

−1(x) · 1

n

n∑

i=1

YiUx,iKh (Xi − x)

=
n∑

i=1

Yi ·
1

n
Kh (Xi − x)

k∑

j=0

[B−1(x)]0,j
1

j!

(
xi − x
h

)j

=
n∑

i=1

Yiwi(x)

with weights

wi(x) =
1

n
Kh (Xi − x)

k∑

j=0

[B−1(x)]0,j
1

j!

(
xi − x
h

)j

that are independent of Y1, . . . , Yn.

Bias, variance, consistency and the rate of convergence for local polynomial
estimator

Proposition 10.3. Suppose that f ∈ Hβ(M) on [0, 1], with β > 0 and M > 0, and

a) the design (X1, . . . , Xn) is regular deterministic;

b) E(εi) = 0, V ar(εi) = σ2;

c) ∃λ0 > 0 such that ∀x ∈ [0, 1], the smallest eigenvalue λmin(B(x)) of B(x) satisfies

λmin(B(x)) > λ0 , where B(x) =
1

n

n∑

i=1

Ux,iU
T
x,iKh(Xi − x);

d) supp(K) ⊆ [−1, 1] and ∃Kmax ∈ (0,∞) such that ∀u, |K(u)| 6 Kmax.
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Let f̂LPn be the Local Polynomial estimator of f which satisfies the above assumptions
with k = bβc. Then, for all x ∈ [0, 1] and h > 1

2n
,

|b(x)| 6 CK
k!
Mhβ, v(x) 6 σ2C2

K

nh
with CK =

2Kmax

λ0
.

Note that if β ∈ (0, 1), the LP estimator becomes the NW estimator, and this proposition
coincides with Proposition 10.2.

Now we study consistency and the rates of convergence of f̂LPn (x). Under the assumptions

of Proposition 10.3, MSE of f̂LPn (x) is bounded by

MSE
[
f̂LPn (x)

]
= [b(x)]2 + v(x) 6

[
CK
k!
M

]2
h2β +

σ2C2
K

n
h−1

which is minimised at

h = hn =

(
σ2C2

K

n

2β
(
CKM
k!

)2

) 1
2β+1

=

(
σ2(k!)2

2βM2n

) 1
2β+1

,

with the value of the minimum being

MSE
[
f̂LPn,hopt(x)

]
6
{[

CK
k!
M

]2
h2βopt +

σ2C2
K

n
h−1opt

}
= CLP · n−

2β
2β+1 → 0 as n→∞,

where CLP is a constant depending only on M,k, σ2 and CK (i.e. Kmax, λ0).
Now we study the local and global minimax rates of convergence of the LP(k) estima-

tor with hn = αn−
1

2β+1 over Hβ(M) with k = bβc. In this case, under the conditions of
Proposition 10.3,

MSE
[
f̂LPn,hn(x)

]
6 C2

K

[
α2M2

[k!]2
+ α−1σ2

]
n−

2β
2β+1 ,

which also implies that

MISE (f̂LP (x)) =
∫ 1

0
MSE(f̂LP (x))dx 6 Cn−

2β
2β+1

with the same constant as in the upper bound on the MSE. Therefore, both local and global

rates of convergence of LP(k) are n−
β

1+2β . Therefore, the local polynomial estimator achieves
both local and global minimax rates of convergence. Hence, we proved the following theorem.

Theorem 10.2. Under the assumptions of Proposition 10.3, the Local Polynomial estimator

with the bandwidth h = hn = αn−
1

2β+1 , α > 0, satisfies

lim sup
n→∞

sup
f∈Hβ(M)

sup
x0∈[0,1]

E
[
n

β
2β+1 |f(x0)− f̂n(x0)|

]2
≤ C <∞,

lim sup
n→∞

sup
f∈Hβ(M)

E
[
n

β
2β+1 ||f − f̂n||2

]2
≤ C <∞,

where C is a constant depending only on β, M , a0, λ0, σ
2
max, Kmax and α.
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10.3 Smoothing Splines

10.3.1 Definition

Definition 10.16. A smoothing spline is the penalised least squares estimator of f :

f̂pen
n (x) = arg min

f∈C2

[
n∑

i=1

(Yi − f(xi))
2 + λ pen(f)

]
(134)

with penalty function pen(f) =
∫

[f ′′(x)]2dx = ||f ′′||22; λ > 0 is called the regularisation
parameter.

The solution to this minimisation problem has a simple form that is called a natural
cubic spline.

Definition 10.17. Let a ≤ t1 < .. < tN ≤ b be a set of ordered points - called knots. A
cubic spline is a continuous function g such that

• g(x) is cubic on [tj, tj+1], for each j = 1, .., N − 1:

g(x) = bj0 + bj1x+ bj2x
2 + bj3x

3, x ∈ [tj, tj+1],

• both g′ and g′′ are continuous at ti, i = 1, .., N .

A spline that is linear beyond the boundary knots is called a natural spline.

• g(x) is linear on [a, t1] and [tN , b]

g(x) = b00 + b01x , x ∈ [a , t1]

g(x) = bN0 + bN1x, x ∈ [tN , b]

Theorem 10.3. (without proof) Solution f̂pen
n of the above problem is a natural cubic

spline with knots at the data points.

Theorem 10.4. Let knots a 6 t1 < · · · < tN 6 b. For j = 3, . . . , N , define

h1(x) = 1, h2(x) = x,

hj(x) = (x− tj−2)3+ −
(tN − tj−2)
(tN − tN−1)

(x− tN−1)3+

+
(tN−1 − tj−2)
(tN − tN−1)

(x− tN)3+, ∀ 3 6 j 6 N,

where (x− y)3+ = max
{

(x− y)3, 0
}

The set of functions (hj)
N
j=1 forms a basis for the set of natural cubic splines at these

knots.

Thus, any natural cubic spline g(x) can be written as

g(x) =
N∑

j=1

βjhj(x).
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By Theorem 10.3, the solution of the minimisation problem that defines the smooth-
ing spline is a natural cubic spline, and by Theorem 10.4, it can be written as the linear
combination of the basis functions hj(x), j = 1, 2, . . . , N . Hence, minimising over functions
f

f̂SSn,λ = arg min
f∈C2

{
N∑

i=1

(Yi − f(xi))
2 + λ

∫
[f ′′(x)]

2
dx

}

= arg min
f∈C2

{
N∑

i=1

(
f(xi)

2 − 2f(xi)Yi + Y 2
i

)
+ λ

∫
[f ′′(x)]

2
dx

}

is equivalent to minimising the following expression over the (n+ 2)-dimensional vector β:

β̂ = arg min
β∈RN





N∑

i=1

[
N∑

j=1

βjhj(xi)

]2
− 2

N∑

i=1

[
N∑

j=1

βjhj(xi)

]
Yi + λ

∫ [ N∑

j=1

βjh
′′
j (x)

]2
dx





= arg min
β∈RN

{
βTHTHβ − 2βTHTY + λβTΩβ

}
,

where N × N matrix H has entries Hij = hj(xi), i = 1, . . . , N , j = 1, . . . , N , and N × N
matrix Ω has elements Ωj` =

∫
h′′j (x)h′′` (x)dx, j, ` = 1, . . . , N .

Hence, if
(
HTH + λΩ

)
is invertible,

β̂ =
[(
HTH + λΩ

)−1
HTY

]
.

Therefore, we have proved the following theorem.

Theorem 10.5. A smoothing spline can be written as

f̂SSn,λ =
N∑

j=1

β̂jhj(x)

where β̂ = (β̂1, . . . , β̂N)T is given by

β̂ = (HTH + λΩ)−1HTY

where Y = (Y1, . . . , Yn)T , and matrices H = (Hij) and Ω = (Ωjl) have entries

Hij = hj(xi), Ωjl =

∫ b

a

h′′j (x)h′′l (x)dx, i ∈ 1, . . . , n, j, l ∈ 1, . . . , N

The smoothing spline is a linear estimator since it can be written as

f̂SSN,λ =
N∑

i=1

wi(x)Yi

with weights

wi(x) =
N∑

j=1

hj(x)
[(
HTH + λΩ

)−1
HT
]
ji
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Figure 46: Smoothing spline for example 10.7.

Example 10.7. Construct a smoothing spline on [−2, 2] given data (−1, 2), (0, 4), (1, 1).
Take λ = 0.01, and construct the smoothing spline using

f̂SSn (x) =
N∑

i=1

N∑

j=1

[(HTH + λΩ)−1HT ]jihj(x)Yi.

The matrices necessary for the calculation are H = (Hij), Hij = hj(xi):

H =




1 −1 0
1 0 1
1 1 6


 , HTH =




3 0 7
0 2 6
7 6 37




and Ω = (Ωj`), Ωj` =
∫
h′′j (x)h′′` (x)dx:

Ω =




0 0 0
0 0 0
0 0 24




We find the coefficients of the natural spline are β̂T = (5.00917, 2.94037,−1.14679). The
data and smoothing spline are shown in Figure 46.

10.3.2 Choice of Regularisation Parameter λ

In papplications, λ is usually chosen using cross-validation

λ̂ = arg min
λ>0

{
n∑

i=1

(
Yi − f̂λ,−i(xi)

)2
}
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Figure 47: Left: smoothing spline estimator Right: Silverman kernel

where f̂λ,−i is a smoothing spline based on all data points except the i’th. The expression
to be minimised is an unbiased estimator of MISE.

Smoothing spline estimators with different regularisation parameters λ are plotted in
Figure 47 (Left). The black line corresponds to λ is chosen by cross-validation, the red
line - to λ = 0.05, and the blue line - to λ = 2. For small λ = 0.05, where the leading
contribution comes from the likelihood, the fitted curve is close to the data points but is not
particularly smooth. For larger λ = 2, the penalisation term dominates the likelihood term,
and the linear curve is such that the penalty term is zero (since the second derivative of a
linear function is 0). λ chosen by cross-validation provides the estimator with the trade-off
between fit to the observed data and smoothness.

10.3.3 Smoothing Spline as a Kernel Estimator

For large N , the smoothing spline is asymptotically equivalent to a kernel estimator:

f̂SS(x) ≈ f̂NW (x),

where f̂NW (x) is the Nadaraya-Watson estimator with the Silverman kernel:

K(z) =
1

2
e−|z|/

√
2 sin(|z|/

√
2 + π/4),

plotted in Figure 47 (right), and the bandwidth h can be expressed in terms of λ as h = λ1/4.
Note that this kernel can take negative values. In particular, the smoothing spline has the
same optimality properties as a kernel estimator, such as consistency and the optimal rates
of convergence.
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10.4 Generalized Additive Models

So far we have only talked about regression models with one covariate. However, a more
common regression problem would have multiple covariates and take the form

Yi = f(x1i, x2i, . . . , xmi) + εi, i = 1, . . . , n,

where x1, . . . , xm are a set of covariates. Fitting of multivariate regression models is more
challenging, not least because large amounts of data are in general required to ensure con-
vergence. The optimal rate of convergence for f ∈ H2(M) (i.e., functions with an integrable
second derivative) is n−4/5 with one covariate, but this degrades to n−4/(4+m) when there
are m covariates. If n is the sample size required to achieve a certain accuracy with one
covariate, then the sample size required to achieve the same accuracy with m covariates
is n(4+m)/5 and therefore grows exponentially with m. Nonetheless, generalisations of most
univariate nonparametric methods exist and we will describe some of these here.

10.4.1 Multivariate local polynomial regression

Kernel regression can be carried out with multiple covariates, but requires generalisation of
the kernel function so that it is a function of m variables. The one-dimensional bandwidth
h is replaced by a bandwidth matrix H, allowing a family of kernels to be defined via

KH(x) =
1√

det(H)
K
(
H−1/2x

)
.

A common approach is to rescale the covariates so that they have the same mean and variance
(at least approximately) and then use an isotropic kernel h−mK(||x||2/h) where K(·) is a
one-dimensional kernel.

Given a choice of kernel, the local polynomial estimator of order k is found in
the same way as before. Firstly we note that an arbitrary function of m variables can be
expanded as

f(x1, . . . , xm) = f(z) +
∂f

∂x1
(x)(x1 − z1) +

∂f

∂x2
(x)(x2 − z2) + · · ·+ ∂f

∂xm
(x)(xm − zm)

+
1

2!

(
∂2f

∂x21
(x)(x1 − z1)2 + 2

∂2f

∂x1∂x2
(x)(x1 − z1)(x2 − z2)+

· · ·+ ∂2f

∂x2m
(x)(xm − zm)2

)
+ · · ·

+
1

k!

(
∂kf

∂xk1
(x)(x1 − z1)k + · · ·+ ∂kf

∂xkm
(x)(xm − zm)

)
.

There are a total of Mk = m+kCm = (m+ k)!/(m!k!) distinct partial derivative terms in this
expansion. We can define analogues of the parameter vector θ and the design vector Ux,i
with this many components

θx = (θ0, θ11, θ
1
2, . . . , θ

1
m, θ

2
11, θ

2
12, . . . θ

2
mm, . . . , θ

k
mm···m)

Ux,i =

(
1,
x1i − x1

h
,
x2i − x2

h
, . . . ,

xmi − xm
h

,
1

2!

(
x1i − x1

h

)2

,

(
x1i − x1

h

)(
x2i − x2

h

)
,

. . . ,
1

2!

(
xmi − xm

h

)2

, . . . ,
1

k!

(
xmi − xm

h

)k)
.
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In the above, hm =
√

det(H), θdj1...jd corresponds to hd∂df/∂xj1 · · · ∂xjd and the estimator
of this quantity provides an estimate of this particular derivative of the function. Note that
we must be careful to ensure the ordering of derivatives in θ and Ux,i is consistent.

Using this notation the solution for the local polynomial least squares estimator

θ̂ = arg min
θ∈RMd

{
n∑

i=1

(
Yi − UT

x,iθx
)2
KH(xi − x)

}

takes exactly the same form as before, namely θ̂x = B−1(x)a(x) where

B(x) =
1

n

n∑

i=1

Ux,iU
T
x,iKH(xi − x), a(x) =

1

n

n∑

i=1

YiUx,iKH(xi − x).

10.4.2 Multivariate splines

In a similar way, the notion of a spline can be generalized to more than one dimension. Once
again, we aim to minimize the sum of squares, but penalise functions that are not sufficiently
smooth. This is formulated in general as

f̂SSn,λ = arg min
f

{
n∑

i=1

(Yi − f(x1i, . . . , xmi))
2 + λJn(f)

}

where

Jn(f) =

∫ ∫
· · ·
∫ [(

∂2f

∂x21

)2

+ 2

(
∂2f

∂x1∂x2

)2

+ 2

(
∂2f

∂x1∂x3

)2

+

· · · +
(
∂2f

∂x22

)2

+ 2

(
∂2f

∂x2∂x3

)2

+ · · ·
(
∂2f

∂x2m

)2
]

dx1dx2 . . . dxm.

The solution to the minimization problem is a thin plate spline.

Definition 10.18. A thin plate spline through a set of knots x1,x2, . . .xn in m-dimensions,
with weights w1, . . . wn, is a function of the form

f(x) =
n∑

i=1

wiG(||x− xi||2) + b0 +
m∑

j=1

bjxj

where G(r) ∝
{
r4−m ln r, m = 2 or m = 4
r4−m, otherwise

, and ||x||22 =
m∑

j=1

x2j .

In higher dimensions, m > 4, this solution diverges at the knots and so it is not a useful
smoothing method. In that case the m = 2 basis function, G(r) = r2 ln r, is often used, or
the simple solution G(r) = r2. If these alternative solutions are used the resulting solution
is in general not the minimizer for the above problem.

Thin plate splines are difficult to fit and so are not used widely in dimensions higher
than 2. It is more common to take an approach that reduces the multi-dimensional fit to a
set of one-dimensional fits by using an additive model.
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10.4.3 Additive models

While the preceding methods provide ways to fit general multivariate nonparametric models,
they are often hard to visualize and interpret. This motivates assuming a somewhat simpler
form for the unknown function, called an additive model.

Definition 10.19. An additive model is a model of the form

Yi = α +
m∑

j=1

fj(xj) + εi, i = 1, . . . , n

where f1, . . . , fm are smooth functions.

The model above is not identifiable since a constant can be subtracted from any one of
the functions and added to α or any of the other functions to leave the model unchanged.
The usual approach to making the model identifiable is to set α̂ = Ȳ =

∑n
i=1 Yi/n and

forcing
∑n

i=1 f̂j(xji) = 0. The resulting functions can be regarded as representing deviations
from the mean Ȳ .

An additive model can be fitted using any of the techniques for one-dimensional
problems that have been described in this course using a procedure known as backfitting.

Definition 10.20. The backfitting algorithm obtains estimates of f̂j(xj) in the additive model

as follows. Fix the estimator α̂ = Ȳ and choose initial guesses for f̂1, . . . , f̂m. Then

1. For j = 1, . . . ,m:

(a) Compute Ỹi = Yi − α̂−
∑

k 6=j f̂k(xki), i = 1, . . . , n.

(b) Apply a one-dimensional nonparametric fitting procedure (smoother) to Ỹi as a
function of xj. Set f̂j equal to the output of this procedure.

(c) Renormalise by setting f̂j(x) equal to f̂j(x)−∑n
i=1 f̂j(xji)/n.

2. Repeat step 1 until the estimators converge.

10.4.4 Projection pursuit

Projection pursuit regression attempts to approximate the unknown function f(x1, . . . , xm)
by one of the form

µ+
M∑

j=1

rj(zj) where zi = αTi x

and each αi is a unit vector. Projection pursuit attempts to find a transformation of the
coordinates that makes an additive model fit as well as possible. In practice, projection
pursuit is fitted iteratively, using some one-dimensional nonparametric method. We use
S(w; Y,x) to denote the value of the output of this nonparametric method at a point w,
where x is the vector of (one-dimensional) covariates at the observed points and Y is the
vector of measured values. First set µ̂ = Ȳ as before and then initialise the residuals
ε̂i = Yi − Ȳ . We use ε̂ to denote the vector of current residuals, i.e., (ε̂)i = ε̂i. We also scale
the covariates so that their variances are equal and then define an m×n matrix X such that
Xij is the value of the i’th covariate for the j’th data point. Then proceed as follows:
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1. Set j = 0.

2. Find the unit vector α that minimizes

I(α) = 1−
∑n

i=1(ε̂i − S(αTxi; ε̂, X
Tα))2∑n

i=1 ε̂
2
i

and then set zji = αTxi and f̂j(zji) = S(αTxi; ε̂, X
Tα).

3. Set j = j + 1 and update the residuals

ε̂i ← ε̂i − f̂j(zji).

4. If j = M stop, else return to step 2.

10.4.5 Generalized additive models

Definition 10.21. An generalized additive model is a model in which observed random vari-
ables Yi are assumed to be drawn from a specified distribution in the exponential family, with
a specified link function, g(·), and a model for the expectation value of the form

η(x) = g(E(Y )) = α +
m∑

j=1

fj(xj)

where f1, . . . , fm are smooth functions.

Fitting a generalized additive model can be done iteratively, using a method for fitting
a general additive model, in the same way that generalized linear models can be found
by fitting general linear models using iterative weighted least squares (Fisher’s method of
scoring).

The general procedure is as follows:

1. Start with observed data {(xi, yi) : i = 1, . . . n} and initial guesses for α̂ and f̂1, . . . , f̂m.

2. Then repeat the folliwng steps until the estimates for f̂1, . . . , f̂m converge:

(a) Compute fitted values

η̂(xi) = α̂ +
m∑

j=1

f̂j(xmi)

and r̂(xi) = g−1(η̂(xi)).

(b) Computed transformed responses

zi = η̂(xi) + (yi − r̂(xi))g′(r̂(xi)),

where g′(·) denotes the derivative of the link function.

(c) Compute weights

wi =
[
(g′(r̂(xi))

2σ2
]−1

.



194 Introduction to Statistics for GWs

(d) Compute the weighted general additive model for zi as a function of xi with
weights wi.

Note that the above procedure relies on being able to fit a weighted nonparametric model, but
all of the methods described above have assumed equal variance. However, it is straightfor-
ward to generalise the previous methods to the weighted context. For example, the extension
of the Nadaraya-Watson estimator to the weighted case is

f̂wNWn (x) =

∑n
i=1wiYiKh(Xi − x)∑n
j=1wjKh(Xj − x)

.

Example 10.8. Construct a general additive model, using smoothing splines, on the interval
[−2, 2] × [−2, 2] given data (−1,−1, 1), (−1, 0, 3), (−1, 1, 0), (0,−1, 2), (0, 0, 4), (0, 1, 1),
(1,−1, 6), (1, 0, 3), (1, 1, 2). Use λ = 0.01 in both dimensions.

We note that in this case we have data on a regular grid. The backfitting procedure
fits a function in one dimension at a time, and so we will need to fit a smoothing spline with
multiple observations at a given point. For equal numbers of observations at each point, ns,
this is a trivial extension of the procedure described above. The spline takes the same form,
but we replace Yi by the average of the Y ′i s at each value of x, and we change the smoothing
parameter to λ/ns.

First we estimate α̂ = Ȳ = 22/9 and subtract this from each point. We then fit a
smoothing spline to the data (−1,−10/9), (0,−1/9), (1, 11/9) using λ = 0.01/3. The H and
Ω matrices are the same as in Example 3.1

H =




1 −1 0
1 0 1
1 1 6


 , Ω =




0 0 0
0 0 0
0 0 24


 .

and we derive β̂1 = [(HTH + λΩ)−1HTY ] as before

β̂T1 = (−0.188781, 0.923948, 0.0809061).

This gives fitted values at x = −1, 0, 1 of

f̂1(−1) = −1.11273, f̂1(0) = −0.107875, f̂1(1) = 1.2206.

We need to correct the fit by subtracting
∑3

i=1 f̂1(x1i)/3, but this number is very close to zero
so the values do not change.

We now need to fit for the second dimension, x2. The first stage, in general, is
to subtract f̂1(x1i) from Yi for each i. In this case we have multiple observations at each
value of x2 and so we then need to average the Yi’s for each x2. Since the grid is regular, we
effectively subtract

∑3
i=1 f̂1(x1i)/3 from each value, but this has been fixed to equal 0 and so

does not change the averaged values. This happens generically when the data is on a regular
grid and means the backfitting algorithm converges in one iteration.

The data to fit in x2 is (−1, 5/9), (0, 8/9), (1,−13/9) with λ = 0.01/3 again. The
H and Ω matrices are unchanged so we obtain

β̂T2 = (1.51025, 0.941748,−0.647249).
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Figure 48: Data (red points) and general additive model fit (shaded surface) for example 10.8.
The top plot shows the full surface, while the bottom two plots show the surface from the
x1 and x2 sides respectively.

The algorithm has now converged and we obtain our general additive model estimate of
f(x1, x2) as

f̂(x1, x2) =
22

9
+

3∑

i=1

β1ihi(x1) +
3∑

i=1

β2ihi(x2)

where h1(x) = 1, h2(x) = x, h3(x) = (x+ 1)3+ − 2(x)3+ + (x− 1)3+.

The raw data and the GAM estimate are shown in Figure 48.
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10.5 Wavelet Estimators

We return again to the nonparametric regression model

Yi = f(xi) + εi, i = 1, . . . , n, E(εi) = 0, Var(εi) = σ2, independently.

In this subsection we will assume that the design is regular deterministic, that is xi−xi−1 =
1/n for all i. In particular, we consider xi = i

n
.

10.5.1 Orthonormal basis and projection estimator

We will denote the set of square-integrable functions by L2 =
{
f : ||f ||2 =

√∫
f 2(x)dx <∞

}
.

Definition 10.22. A set of functions {ϕk(x)}∞k=0 is called an orthonormal basis of L2[0, 1],
if

• ∀ g ∈ L2,∃ (ak)
∞
k=0 such that g(x) =

∞∑

k=0

akϕk(x) (the set spans L2[0, 1]),

• ∀x,
∞∑

k=0

akϕk(x) = 0⇒ all ak = 0 (linear independence),

• j 6= k,

∫
ϕk(x)ϕj(x) = 0 (orthogonality),

• ∀ k, ||ϕk||2 = 1 (normalisation).

Therefore, any function f ∈ L2[0, 1] can be written as

f(x) =
∞∑

k=0

θkϕk(x).

Due to orthonormality of the basis, the coefficients θk have a simple expression: θk =∫ 1

0
f(x)ϕk(x)dx, since

∫ 1

0

f(x)ϕk(x)dx =

∫ 1

0

[
∞∑

j=0

θjϕj(x)

]
ϕk(x)dx =

∞∑

j=0

θj

[∫ 1

0

ϕj(x)ϕk(x)dx

]
= θk

Examples of orthonormal bases:
1. Fourier basis: ϕ2k(x) = 1, ϕ2k(x) = cos(2πkx), ϕ2k+1(x) = sin(2πkx), k = 1, 2, . . .,

x ∈ [0, 1] (Tsybakov, 2009).
2. A wavelet basis (Vidakovic, 1999)
3. An orthogonal polynomial basis, such as Chebyshev, Lagrange, Laguerre polynomials

(more commonly used in the context of density estimation)
Projection estimator
Assume that f ∈ L2[0, 1], and {ϕk(x)}∞k=0 is an orthonormal basis of L2[0, 1]. Then, we

can write

f(x) =
∞∑

k=0

θkϕk(x)
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for some real coefficients θ0, θ1, . . .. A projection estimation of f is based on a simple idea:
approximate f by its projection

∑N
k=0 θkϕk(x) on the linear span of the first N + 1 functions

of the basis, and replace θk by their estimators. Thus, a projection estimator is constructed
in three steps.

(1) for large N, approximate f(x) ≈
N∑

k=0

θkϕk(x)

(2) construct an estimator θ̂k of θk from data (y1, . . . , yn), k = 0, 1, . . . , N

(3) plug in the estimator θ̂k in the approximation: f̂N(x) =
N∑

k=0

θ̂kϕk(x)

From the expression for θk in terms of f and ϕk, if we know only values of f(x) at points
xi = i/n, i = 1, . . . , n, then for large n the integral can be approximated by a sum:

θk ≈
1

n

n∑

i=1

f(xi)ϕk(xi).

Since we observe values of f(xi) with error, we plug in these observation in the above
expression to obtain the following estimator for θk:

θ̂k =
1

n

n∑

i=1

Yiϕk(xi).

Inserting this expression into the estimator of the function, we obtain a projection esti-
mator:

f̂N(x) =
N∑

k=0

[
1

n

n∑

i=1

f(xi)ϕk(xi)

]
ϕk(x) =

n∑

i=1

Yi

[
N∑

k=0

1

n
ϕk(xi)ϕk(x)

]

which is a linear estimator with weights wi(x) =
∑N

k=0
1
n
ϕk(xi)ϕk(x) which do not depend

on Yi. The choice of N corresponds to choosing the smoothness of the function f̂N .

10.5.2 Wavelet basis

A wavelet basis is constructed using two functions, a scaling function φ(x) and a wavelet
function ψ(x) that are also called the father and mother wavelet respectively. They satisfy
the following properties: ∫

φ(x)dx = 1,

∫
ψ(x)dx = 0.

Definition 10.23. Given a wavelet function ψ and a scaling function φ, a wavelet basis on
[0, 1] is

{φ, ψjk, j = 0, 1, . . . , k = 0, . . . , 2j − 1},
where φjk(x) = 2j/2φ(2jx− k), ψjk(x) = 2j/2ψ(2jx− k).
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Figure 49: Haar and Daubechies wavelet functions

Under certain additional conditions on the scaling function φ(x) and the wavelet function
ψ(x), this basis is orthonormal. Then, any f ∈ L2[0, 1] can be decomposed in a wavelet
basis:

f(x) = θ0φ(x) +
∞∑

j=0

2j−1∑

k=0

θjkψjk(x),

and θ = {θ0, θjk} is a set of wavelet coefficients:

θ0 =

∫ 1

0

φ(x)f(x)dx, θjk =

∫ 1

0

ψjk(x)f(x)dx.

Wavelets (φ, ψ) are said to have regularity s if they have s derivatives and ψ has s
vanishing moments (

∫
xkψ(x)dx = 0 for integer k ≤ s).

Examples of wavelet functions are plotted in Figure 49, and the structure of the wavelet
basis is illustrated in Figure 50.

Example 10.9. The Haar wavelet basis is determined by the scaling function φ(x) = 1(0,1](x)
and the wavelet function ψ(x) = 1(0,1/2](x)− 1(1/2,1](x) which satisfy

∫
φ(x)dx = 1,

∫
ψ(x)dx = 0,

∫
ψjk(x)dx = 0.

Check that the basis {φ, ψjk, j = 0, 1, . . . , k = 0, . . . , 2j − 1} defined by these functions is
orthonormal, that is, that the functions are normalised

||φ||22 =

∫
φ2(x)dx = 1, ||ψ||22 =

∫
ψ2(x)dx = 1, ||ψjk||22 =

∫
ψ2
jk(x)dx = 1,

and are orthogonal:
∫
φ(x)ψjk(x)dx = 0,

∫
ψjk(x)ψ`m(x) = 0 for (j, k) 6= (`,m).

Local polynomial and kernel estimators provide localisation in time only. A Fourier basis
provides localisation in frequency only. The advantage of a wavelet basis is that it provides
localisation in both time and frequency, at the expense of having two indices. The wavelet
transform provides a sparse representation of most functions (it is the basis of JPEG2000).
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Figure 50: Daubechies wavelet transform, s = 8

10.5.3 Wavelet estimators

A wavelet estimator can be constructed following the same structure as a projection
estimator:

1) derive an estimate θ̂jk from noisy discrete wavelet coefficients
2) substitute into the series expansion to obtain the estimate of f , to obtain a wavelet

estimator f̂ :

f̂(x) = θ̂0φ(x) +
∞∑

j=0

2j−1∑

k=0

θ̂jkψjk(x).

For example, a wavelet projection estimator can be constructed as

f̂J0(x) = θ̂0φ(x) +

J0−1∑

j=0

2j−1∑

k=0

θ̂jkψjk(x),

with

θ̂0 =
1

n

n∑

i=1

Yiφ(xi), θ̂jk =
1

n

n∑

i=1

Yiψjk(xi), j < J0.

From this definition it follows that θ̂jk = 0 for j ≥ J0. It is a linear estimator.

The number of nonzero coefficients of f̂J0(x) is

1 +

J0−1∑

j=0

2j−1∑

k=0

1 = 1 +

J0−1∑

j=0

2j = 1 +
2J0 − 1

2− 1
= 2J0 .

Example 10.10. For the Haar wavelet projection estimator, the variance is

Var(f̂J0(x)) =
σ2

n


(φ(x))2 +

J0−1∑

j=0

2j−1∑

k=0

(ψjk(x))2


 =

σ2

n

[
1 +

J0−1∑

j=0

2j

]
=

2J0

n
σ2,
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since (φ(x))2 = 1 for all x ∈ [0, 1], and (ψjk(x))2 = 2j for (j, k) such that x ∈ supp(ψjk), i.e.
if k

2j
≤ x < k+1

2j
(just one k = bx2jc for each j satisfies this condition).

We will also consider wavelet thresholding estimators which are examples of nonlinear
estimators (see Section 10.5.10).

10.5.4 Multiresolution analysis (MRA)

In this section there is a brief explanation of why wavelet functions, together with the scaling
function, form a basis.

Definition 10.24. A multiresolution analysis (MRA) is a sequence of closed subspaces Vn,
n ∈ {0, 1, 2, ..} in L2(R) such that

1. V0 ⊂ V1 ⊂ V2 ⊂ . . . , Clos(
⋃
j Vj) = L2(R), where Clos(A) stands for the closure of a

set A.

2. Subspaces Vj are self-similar:

g(2jx) ∈ Vj ⇔ g(x) ∈ V0,

3. There exists a scaling function φ ∈ V0 such that
∫
R φ(x)dx 6= 0 whose integer-translates

span the space V0:

V0 =

{
g ∈ L2(R) : g(x) =

∑

k∈Z

ckφ(x− k) for some (ck)k∈Z

}
,

and for which the set of functions {φ(· − k), k ∈ Z} is an orthonormal basis.

Property 2 of MRA implies that for any h(x) ∈ Vj ∃ g ∈ V0 such that

h(x) = g(2jx) =
∑

k∈Z

ckφ(2jx− k),

and hence {φ(2jx − k)}k∈Z or, equivalently, {φjk}k∈Z, form an orthonormal basis of Vj. In
particular, since φ(x) ∈ V0 we have

φ(x) =
√

2
∑

k∈Z

hkφ(2x− k). (135)

The coefficients in this expansion satisfy
∑

k

hk =
√

2,
∑

k

hkhk−2l = δ0l.

We then define another function (the mother wavelet)

ψ(x) =
√

2
∑

gkφ(2x− k)

and require that ψ(x − m) is orthogonal to φ(x) for all integers m, and that {ψ(x − m) :
m ∈ Z} is an orthonormal set. These conditions impose constraints on the coefficients {gk}

∑

k

gkhk+2m = 0 ∀m ∈ Z,
∑

k

gkgk−2l = δ0l
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which can be satisfied by the choice gk = (−1)1−kh1−k. It is clear that the space of functions
spanned by {ψ(x − m) : m ∈ Z}, which we denote W0, is orthogonal to that spanned by
{φ(x −m) : m ∈ Z}, which is V0. The direct sum W0 ⊕ V0 can be seen to coincide with V1
(we will not prove this here, but roughly speaking V1 is twice the size of V0 so it makes sense
that adding two orthogonal spaces of the same size as V0 together can generate V1).

We can continue this procedure to larger j. For each j ≥ 0, we define the “difference”
space Wj: Vj+1 = Vj⊕Wj, for which an orthonormal basis is given by {ψjk(x) : k ∈ Z}. We
see that L2(R) = V0⊕W1⊕W2⊕. . .⊕Wj⊕. . ., and the set {φ(x), ψjk(x) : j = 0, 1, 2, .., k ∈ Z}
forms an orthonormal basis of L2(R).

10.5.5 Filter characterisation of the wavelet transform

We now prove some of the results used to describe the MRA above.

Proposition 10.4. 1.
∑

k∈Z hk =
√

2,
∑

k∈Z gk = 0

2.
∑

k∈Z h
2
k = 1,

∑
k∈Z g

2
k = 1

3. For all ` 6= 0,
∑

k∈Z hkhk−2` = 0,
∑

k∈Z gkgk−2` = 0

4. For all ` ∈ Z,
∑

k∈Z gkhk−2` = 0.

Proof of Properties 1 and 2. 1. To prove
∑

k∈Z hk =
√

2, we integrate the scaling equation:

1 =

∫
φ(x)dx =

∑

k∈Z

hk
√

2

∫
φ(2x− k)dx = [v = 2x− k] =

∑

k∈Z

hk2
−1/2

∫
φ(v)dv

=
1√
2

∑

k∈Z

hk

which implies the result.
Similarly, to prove

∑
k∈Z gk = 0, we integrate the wavelet equation:

0 =

∫
ψ(x)dx =

√
2
∑

k∈Z

gk

∫
φ(2x− k)dx = [v = 2x− k] = 2−1/2

∑

k∈Z

gk

∫
φ(v)dv

= 2−1/2
∑

k∈Z

gk

which implies that
∑

k∈Z gk = 0.
2. To prove

∑
k∈Z h

2
k = 1, we integrate the squared scaling equation:

1 =

∫
φ(x)2dx = 2

∫ [∑

k∈Z

hkφ(2x− k)

]2
dx =

∑

k,m

hkhm

∫
φ(2x− k)φ(2x−m)d(2x)

=
∑

k

h2k

since
∫
φ(2x− k)φ(2x−m)d(2x) = 1 if k = m and is 0 otherwise.∑

k∈Z g
2
k = 1 is proved similarly, by integrating the squared wavelet equation.
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The two filter decompositions (for φ(x), with coefficients {hk} and ψ(x) with coefficients
{gk} satisfying gk = (−1)kh1−k) have other properties which we will use later to show that a
finite dimensional version of wavelet decomposition, a discrete wavelet transform performed
via the cascade algorithm, transforms iid Gaussian random variables to iid Gaussian random
variables.

Example 10.11. Determine filters gk, hk for the Haar wavelet transform.
For the Haar wavelets, the scaling equation is

1(0,1](x) = 1(0,1/2](x) + 1(1/2,1](x) = 1(0,1](2x) + 1(0,1](2x− 1)

That is,

φ(x) = φ(2x) + φ(2x− 1) =
√

2
∑

k∈Z

hkφ(2x− k)

which implies that the only nonzero values of hk are h0 = h1 = 1/
√

2.
The Haar wavelet function satisfies the following:

ψ(x) = 1(0,1/2](x)− 1(1/2,1](x) = 1(0,1](2x)− 1(0,1](2x− 1) =
1√
2

(φ(2x)− φ(2x− 1))

which implies that g0 = 1/
√

2, g1 = −1/
√

2 and the remaining gk are 0.

10.5.6 Discrete wavelet transform (DWT)

In typical realistic settings, we observe only a finite number of noisy values of the function.
How can we obtain (noisy) wavelet coefficients based on this partial information?

10.5.7 Motivation

We want to discretise the wavelet transform:

θjk =

∫ 1

0

f(x)ψjk(x)dx ≈ 1

n

n∑

i=1

ψjk(i/n)f(i/n) =
1√
n

(Wfn)(jk) =
wjk√
n

=: θ̃jk,

where W , an n × n matrix defined by W1i = φ(xi), Wli = ψjk(xi) with l = 2j + k + 1,
is (approximately) orthonormal and fn is a vector fn = (f(1/n), . . . , f(1)). We assume
n = 2J for some integer J . The subscript (jk) in the above denotes the row, l = 2j + k + 1,
corresponding to a particular pair (j, k).

If the function f is bounded, the approximate wavelet coefficients θ̃jk are close to the
exact coefficients θjk: |θ̃jk−θjk| ≤ C/n. For Haar wavelets, θjk = θ̃jk since the Haar wavelets
are constants on each interval (i/n, (i+ 1)/n) for n = 2J for some integer J .

Use the linear transform defined by a matrix W as a discrete wavelet transform. There
are other ways to derive the approximation, so that |θ̃jk − θjk| ≤ C/n and matrix W is
orthonormal (WW T = I). In practice, it is done via the cascade algorithm which is
derived from filter properties of wavelet transform. In this case, |θ̃jk − θjk| ≤ C/n and the
matrix W satisfies WW T = I due to the filter properties (Proposition 10.4).

Applying the discretised wavelet transform W to data yields

djk = wjk + εjk, 0 ≤ j ≤ J − 1, k = 0, . . . , 2j − 1,

c00 = u00 + ε0,
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where djk and c00 are discrete wavelet and scaling coefficients of observations (yi), and εjk
and ε0 are discrete wavelet coefficients of the noise (εi). If εi ∼ N(0, σ2) independent, then
εjk ∼ N(0, σ2) and ε0 ∼ N(0, σ2) independently due to WW T = I.

10.5.8 Cascade algorithm

The wavelet and scaling equations are the basis for the cascade algorithm that can be used to
calculate the wavelet coefficients. The algorithm is very fast, taking 2n steps where n is the
number of the observations. The algorithm is constructed by using recurrent equations for
wavelet and scaling coefficients that are derived from the wavelet and the scaling equations
in the following way.

Suppose we observe values of f(xi), xi = i/n, i = 1, . . . , n. Denote the corresponding
“noiseless” discrete scaling coefficients by ujk and discrete wavelet coefficients by wjk (recall
that θjk ≈ wjk/

√
n and θ0 ≈ u00/

√
n). Then, the wavelet coefficients satisfy the following

(using the wavelet equation):

θjk =

∫ 1

0

f(x)ψjk(x)dx =

∫ 1

0

f(x)ψ(2jx− k)2j/2dx

=

∫ 1

0

f(x)

[
√

2
∑

m∈Z

gmφ
(
2(2jx− k)−m

)
]

2j/2dx

=

∫ 1

0

f(x)

[∑

m∈Z

gmφ
(
2j+1x− 2k −m

)
2(j+1)/2

]
dx

=
∑

m∈Z

gm

∫ 1

0

f(x)φj+1,2k+m(x)dx.

Here,
∫ 1

0
f(x)φjk(x)dx are scaling coefficients of f that are not used directly for estimation

but are useful for computational purposes. For the discrete wavelet and scaling coefficients
wjk and ujk, we can write the following recurrence relation:

wjk =
∑

m∈Z

gmuj+1,2k+m.

Using the scaling equation, we can derive a similar connection between the scaling coefficients
at consecutive levels j and j + 1:

ujk =
√
n

∫ 1

0

f(x)φjk(x) =
∑

m∈Z

hmuj+1,2k+m.

These recurrence equations are used in the cascade algorithm. They also apply to noisy
scaling and wavelet coefficients cjk and djk.

We need to have a starting point. Assuming that supp(φ) = [0, 1], like for the Haar
scaling function, the scaling coefficients at level J for k = 0, 1, .., 2J − 1 satisfy:

∫ 1

0

f(x)2J/2φ(2Jx− k)dx = 2J/2
∫ (k+1)/2J

k/2J
f(x)φ(2Jx− k)dx

≈ f((k + 1)/n)

∫ (k+1)/2J

k/2J
2J/2φ(2Jx− k)dx = [v = 2Jx− k] = f(xk+1)2

−J/2
∫ 1

0

φ(v)dv

≈ f(xk+1)√
n

.
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Therefore, we can set uJ,k = f(xk+1), k = 0, 1, . . . , 2J − 1 = n − 1. For noisy observations
(Yi), we can start with noisy discrete scaling coefficients cJ,k = Yk+1.

Assumptions for the cascade algorithm.

1. Yi are (noisy) observations of a function f at points xi, i = 1, .., n

2. points (xi) form a regular fixed design (xi − xi−1 = 1
n
).

3. n = 2J for some integer J .

Cascade algorithm

1. Set cJk = Yk+1 for k = 0, 1, .., 2J − 1, set j = J − 1;

2. Set

cjk =
∑

m∈Z

hmcj+1,2k+m, djk =
∑

m∈Z

gmcj+1,2k+m;

3. if j = 0 stop; else set j := j − 1 and repeat step 2.

Output: discrete wavelet coefficients c00, djk for 0 ≤ j ≤ J − 1, k = 0, . . . , 2j − 1.
Using the expressions for the Haar wavelet filters hk and gk, the recurrent step of the

cascade algorithm for the Haar wavelet transform is

ujk =
1√
2

(uj+1,2k + uj+1,2k+1) , wjk =
1√
2

(uj+1,2k − uj+1,2k+1) .

To reconstruct the function from the wavelet coefficients, this algorithm can be inverted.

10.5.9 Summary

• The number of data points n = 2J .

• Cascade algorithm: set cJ0 = Y1, . . . , cJ,2J−1 = Yn, and compute recursively

cjk =
∑

m

hmcj+1,2k+m, djk =
∑

m

gmcj+1,2k+m.

• The output of the the cascade algorithm are discrete wavelet coefficients: c00 & djk,
j < J that satisfy

djk ∼ N(wjk, σ
2), c00 ∼ N(u00, σ

2), independently.

• To construct an estimator of f , choose estimators ŵjk, û00(= c00), and hence construct
the corresponding estimators

θ̂0 =
û00√
n
, θ̂jk =

ŵjk√
n
.

These estimators are then used to obtain an estimator of the function f :

f̂(x) = θ̂0φ(x) +
J−1∑

j=0

2j−1∑

k=0

θ̂jkψjk(x).
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For example, a linear projection estimator f̂J0(x) for f(x) can be constructed using the
output of the cascade algorithm:

ŵjk = djk, j ≤ J0 − 1; ŵjk = 0, j ≥ J0; û00 = c00.

For Haar wavelets, the linear projection estimator f̂J0 coincides with the wavelet estimator
based on discrete wavelet coefficients with ŵjk = djk for j ≤ J0 − 1 and ŵjk = 0 for j > J0.

10.5.10 Thresholding Estimators for threshold λ

Hard thresholding estimator

ŵjk = djkI (|djk| > λ) =

{
djk, if |djk| > λ
0, if |djk| < λ

Soft thresholding estimator

ŵjk =





djk − λ, djk > λ
0, −λ ≤ djk ≤ λ
djk + λ, djk < −λ

There is a default choice of threshold λ that is called the universal threshold:

λ = σ
√

2 log n.

In practice, the standard deviation σ is estimated as the median absolution deviation
(MAD):

σ̂ = 1.4826 MAD(dJ−1,0, . . . , dJ−1,2J−1)

where MAD(x1, . . . , xn) = median(|xi −median(xi)|).

10.5.11 Inference on f using wavelet estimators

10.5.12 Asymptotic confidence intervals for f(x)

Yi = f(xi) + εi, xi =
i

n
εi ∼ N(0, σ2)

To construct an asymptotic confidence interval for f(x), we use the linear estimator

f̂J0(x) = θ̂0φ(x) +

J0−1∑

j=0

2j0−1∑

k=0

θ̂jkψjk(x),

where

θ̂0 =
1√
n
û00, û00 = c00 =

1√
n

n∑

i=1

Yiφ(xi)

θ̂jk =
1√
n
ŵjk, ŵjk = djk =

1

n

n∑

i=1

Yiψjk(xi)
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Recall that this estimator is linear:

⇒ f̂J0(x) =
n∑

i=1

wi(x)Yi, wi(x) =
1

n
φ(xi)φ(x) +

1

n

J0−1∑

j=0

2j−1∑

k=0

ψjk(xi)ψjk(x),

therefore, given independent observations of Yi ∼ N(f(xi), σ
2) for i = 1, . . . , n,

f̂J0(x) ∼ N

(
f(x), σ2

n∑

i=1

w2
i (x)

)
for large n.

For Haar wavelets, we derived that
∑n

i=1w
2
i (x) = 2J0/n.

Therefore, an asymptotic (1 − α)100% confidence interval for f(x) based on the Haar

wavelets projection estimator f̂J0(x), assuming that J0 is large enough so that the bias is
much smaller than the variance, is

f̂J0(x)± zα/2
2J0/2σ√

n
.

Note that if J0 is too large, then the confidence interval is large. Therefore, there is a
tradeoff between bias and variance that results in “optimal” choice of J0. This is discussed
by considering the MISE of f̂J0(x).

10.5.13 Hypothesis testing

Local support of the wavelet basis is useful when it is of interest to test whether a function
is a constant on a certain subinterval of [0, 1]. We want to test the hypothesis

H0 : f(x) = constant on (a, b)

using Haar wavelets.
Due to the support of ψjk being [k/2j, (k+1)/2j], for (a, b) = (m2−`, (m+1)2−`) for some

positive integers m and ` this hypothesis is equivalent to the following hypothesis about the
Haar wavelet coefficients of function f :

H0 : θjk = 0 for (j, k) such that a <
k + 1/2

2j
< b

that is, the change point of ψjk is inside (a, b). The equivalent null hypothesis can also be
written as

H0 : wjk = 0 for (j, k) such that a <
k + 1/2

2j
< b

since (θjk = wjk/
√
n) for Haar wavelets.

Test this hypothesis using observed discrete wavelet coefficients djk ∼ N(wjk, σ
2), j =

0, . . . , J − 1, k = 0, . . . , 2j − 1, independently.
Given only n = 2J observations, we can test this hypothesis only using the wavelet

coefficients with j < J :

H0 : wjk = 0 for (j, k) such that a <
k + 1/2

2j
< b& j < J.
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Test statistic:
T = σ−2

∑

j,k: a<
k+1/2

2j
<b, j<J

d2jk

which has a χ2
m distribution under the null hypothesis where m is the number of coefficients

tested to be zero, that is, m = Card{(j, k) : a < k+1/2
2j

< b, 0 ≤ j < J, 0 ≤ k ≤ 2j − 1}.
Example 10.12. Data: y = (−1.0,−0.2, 0.8, 0.6, 0.0,−0.4,−0.3,−0.5), xi = i/8, i = 1, .., 8,
n = 8. The data follows the nonparametric regression model with σ = 0.2.

1. Test H0 : f(x) = const on (1/4, 1/2).
Corresponding hypothesis for the wavelet coefficients is H0 : wjk = 0 for (j, k) that satisfy

1/4 < k+1/2
2j

< 1/2 , j < J − 1 = 2 then (2j/4− 1/2) < k < 2j/2− 1/2

Since n = 8 = 23, we have J = 3 and hence we consider 0 ≤ j ≤ 2:
j = 2: 1/2 < k < 3/2 , i.e. k = 1 and hence (j, k) = (2, 1) satisfies the condition
j = 1: 0 < k < 1/2 no integer in the interval, so none
j = 0: −1/4 < k < 0 none.

Therefore, the equivalent hypothesis is H0 : w21 = 0. Since the corresponding noisy
discrete Haar wavelet coefficient d21 ∼ N(w21, σ

2), under the null hypothesis T = d221/σ
2 ∼

χ2
1, therefore we reject H0 at a 5% significance level if T = d221/σ

2 > χ2
1(5%) = 3.841. Since

for this data d21 = 0.1414 and hence T = d221/σ
2 = 0.5 < 3.841, there is not sufficient data

to reject the null hypothesis at a 5% significance level.

2. Now test H0 : f(x) = const on (1/2, 1).
The corresponding hypothesis for the wavelet coefficients is H0 : wjk = 0 for (j, k) s.t.

1/2 < k+1/2
2j

< 1, that is, for (j, k) such that
⇔ 2j/2− 1/2 < k < 2j − 1/2.

j ≤ J − 1 = 2. Check this condition for each 0 ≤ j ≤ 2:
j = 2: 3/2 < k < 7/2, that is, k = 2, 3
j = 1: 1/2 < k < 3/2, that is, k = 1
j = 0: 0 < k < 1/2 none

Therefore, the equivalent hypothesis is

H0 : w11 = w22 = w23 = 0.

The test statistic is T = (d211 + d222 + d223)/σ
2 ∼ χ2

3 under H0. That is, we reject the
null hypothesis at a 5% significance level if T > χ2

3(5%) = 7.815. For this data, T =
(0.22 + 0.28284272 + 0.14142142)/0.04 = 3.5 < 7.815, therefore there is not sufficient data to
reject the null hypothesis at a 5% significance level.

Remark 10.2. For an arbitrary interval (a, b) (that is, not of the form (m2−`, (m+ 1)2−`)),
the equivalent null hypothesis in terms of Haar wavelet coefficients is

H0 : wjk = 0 for (j, k) such that {a < k

2j
< b or a <

k + 1/2

2j
< b or a <

k + 1

2j
< b},

for j = 0, 1, . . . , J − 1 and k = 0, 1, . . . , 2j − 1. That is, in the more general case we need to
check if any of the three points where the Haar wavelet ψjk jumps between different constant
values is inside the interval (a, b).

For an interval of the type (m2−`, (m + 1)2−`) it is not necessary to check the end point
since they are either at the same place with regard to (a, b) (that is, inside or outside) as the
mid point (k + 1/2)2−j or on the boundary of the interval.
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10.5.14 MISE (mean integrated square error) of wavelet estimators

Suppose a function f has the following wavelet decomposition:

f(x) = θ0φ(x) +
∞∑

j=0

2j−1∑

k=0

θjkψjk(x),

and consider a wavelet estimator

f̂(x) = θ̂0φ(x) +
∞∑

j=0

2j−1∑

k=0

θ̂jkψjk(x).

Lemma 10.2. (Parseval identity). For a function f and its wavelet estimator f̂(x),

||f − f̂ ||22 = (θ0 − θ̂0)2 +
∞∑

j=0

2j−1∑

k=0

(θ̂jk − θjk)2.

This is due to the wavelet basis being orthonormal.
Consider the following estimator of the wavelet coefficients for j = 0, .., J0 − 1 for some

J0:

θ̂jk =
1

n

n∑

i=1

ψjk(xi)Yi,

and θ̂jk = 0 for j ≥ J0. The estimator of the scaling coefficient is θ̂0 = 1
n

∑n
i=1 φ(xi)Yi.

Sometimes we refer to θ0 as θ−1,0, and to φ(x) as ψ−1,0(x).
The corresponding wavelet estimator is

f̂J0(x) =
∑

j≤J0−1

∑

k

θ̂jkψjk(x) =
1

n

n∑

i=1

Yi
∑

j≤J0−1

∑

k

ψjk(xi)ψjk(x).

This wavelet estimator

f̂J0(x) =
1

n

n∑

i=1

Yi
∑

j≤J0−1

∑

k

ψjk(xi)ψjk(x)

is linear since it can be written as

f̂J0(x) =
n∑

i=1

YiWi(x),

with Wi(x) = 1
n

∑
j≤J0−1,k ψjk(xi)ψjk(x), i.e., that is independent of the Yi’s.

By Lemma 10.2,

E||f − f̂ ||22 = E(θ0 − θ̂0)2 +
∞∑

j=0

2j−1∑

k=0

E(θ̂jk − θjk)2,

hence it is sufficient to find MSE of θ̂jk, E(θ̂jk − θjk)2.
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We know that

E(θ̂jk − θjk)2 = Var(θ̂jk) +
[
bias(θ̂jk)

]2
.

Therefore, we need to find the variance and the bias of θ̂jk.
Variance
For j ≤ J0 − 1,

Var
(
θ̂jk

)
= Var

(
1

n

n∑

i=1

ψjk(xi)Yi

)

=
1

n2

n∑

i=1

ψ2
jk(xi)Var (Yi) =

σ2

n

1

n

n∑

i=1

ψ2
jk(xi)

=
σ2

n
(1 + o(1)),

due to the independence of the Yi’s and 1
n

∑n
i=1 ψ

2
jk(xi) ≈

∫ 1

0
ψ2
jk(x)dx = 1.

Bias
For j ≤ J0 − 1, the bias is

E
(
θ̂jk − θjk

)
=

1

n

n∑

i=1

f(xi)ψjk(xi)−
∫ 1

0

f(x)ψjk(x)dx.

Assume that f ∈ Hβ(Mf ) and is bounded, i.e. |f(x)| ≤ Cf for all x ∈ [0, 1]. We assume
that the wavelet function ψ is such that |ψ(x)−ψ(y)| ≤Mψ|x− y| for all x, y ∈ [0, 1], and it
is bounded: |ψ(x)| ≤ Cψ for all x ∈ [0, 1] (and that the same conditions hold for the scaling
function φ). We also assume that supp(ψ) ⊆ [0, 1] and supp(φ) ⊆ [0, 1] .

Under these assumptions with β ∈ (0, 1], the absolute value of the bias is bounded by

|E
(
θ̂jk − θjk

)
| ≤

n∑

i=1

∫ xi

xi−1

|f(x)ψjk(x)− f(xi)ψjk(xi)| dx

≤
n∑

i=1

∫ xi

xi−1

[|f(x)ψjk(x)− f(x)ψjk(xi)|+ |f(x)ψjk(xi)− f(xi)ψjk(xi)|] dx

≤ max
x
|f(x)|2j/2

n∑

i=1

∫ xi

xi−1

∣∣ψ(2jx− k)− ψ(2jxi − k)
∣∣ dx

+
n∑

i=1

|ψjk(xi)|
∫ xi

xi−1

|f(x)− f(xi)| dx.

Considering the first term on the right hand side, we have
∫ xi

xi−1

∣∣ψ(2jx− k)− ψ(2jxi − k)
∣∣ dx ≤ Mψ

∫ xi

xi−1

|2jx− k − (2jxi − k)|dx

≤ 0.5Mψ2jn−2.

The intersection of the interval of integration [(i− 1)/n, i/n] and the support of ψjk

supp(ψjk) = [k2−j, (k + 1)2−j] = [k2J−j/n, (k + 1)2J−j/n]
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is nonempty (and consists of more than a single point) iff k2J−j < i − 1 < (k + 1)2J−j or
k2J−j < i < (k + 1)2J−j, i.e. k2J−j + 1 ≤ i <≤ (k + 1)2J−j. There are 2J−j of such i. Thus,

n∑

i=1

∫ xi

xi−1

|ψjk(x)− ψjk(xi)|dx ≤ 0.5Mψ2jn−22J−j = 0.5Mψn
−22J = 0.5Mψn

−1,

using n = 2J and hence

max
x
|f(x)|2j/2

n∑

i=1

∫ xi

xi−1

∣∣ψ(2jx− k)− ψ(2jxi − k)
∣∣ dx ≤ 0.5CfMψ2j/2n−1.

For the second term, we have

∫ xi

xi−1

|f(x)− f(xi)| dx ≤ Mf

∫ xi

xi−1

|x− xi|β ≤
Mf

(β + 1)nβ+1
,

and using the restriction to the support of ψjk

|ψjk(xi)| ≤ 2j/2Cψ1(k2J−j + 1 < i < (k + 1)2J−j),

⇒
n∑

i=1

|ψjk(xi)| ≤ 2j/2Cψ

n∑

i=1

1(k2J−j + 1 ≤ i ≤ (k + 1)2J−j) ≤ 2J−j/2Cψ ≤ Cψn2−j/2.

Thus,

|Eθ̂jk − θjk| ≤ 0.5CfMψ2j/2n−1 +
MfCψ
(β + 1)

2−j/2n−β

again using n = 2J and j < J .

MSE (θ̂jk) for j ≥ J0

For j ≥ J0, θ̂jk = 0, and therefore the MSE (θ̂jk) = E(θ̂jk − θjk)2 = θ2jk.

For f ∈ Hβ(Mf ), |θjk| ≤Mf2
−j(β+1/2) for all j, k.

Now we summarise the properties of bias and variance of θ̂jk that we have derived.

Lemma 10.3. Assume that

• f ∈ Hβ(Mf ), β ∈ (0, 1), and |f(x)| ≤ Cf for all x ∈ [0, 1];

• ψ is such that supp(ψ) ⊆ [0, 1], |ψ(x) − ψ(y)| ≤ Mψ|x − y| for all x, y ∈ [0, 1], and it
is bounded: |ψ(x)| ≤ Cψ for all x ∈ [0, 1] (and that the same conditions hold for the
scaling function φ).

Then, for θ̂jk = 1
n

∑n
i=1 ψjk(xi)Yi,

Var
(
θ̂jk

)
=

σ2

n
(1 + o(1)) as n→∞,

|bias(θ̂jk)| ≤ c12
j/2n−1 + c22

−j/2n−β,

where c1 = 0.5CfMψ and c2 =
MfCψ
(β+1)

.
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MISE of f̂J0(x)
Under the assumptions of Lemma 10.3, the MISE of the linear wavelet estimator is

E||f − f̂J0||22 = E(θ0 − θ̂0)2 +

J0−1∑

j=0

2j−1∑

k=0

E(θ̂jk − θjk)2 +
∞∑

j=J0

2j−1∑

k=0

θ2jk

≤ 2J0
σ2

n
(1 + o(1)) + 2c21n

−2[1 +

J0−1∑

j=0

2j−1∑

k=0

2j]

+2c22n
−2β[1 +

J0−1∑

j=0

2j−1∑

k=0

2−j] +M2
f

∞∑

j=J0

2j−1∑

k=0

2−j(2β+1)

= 2J0
σ2

n
(1 + o(1)) + 2c21n

−2(22J0 + 2)/3 + 2c22n
−2β(J0 + 1) +M2

f

2−2βJ0

1− 2−2β

≤ σ2N

n
(1 + o(1)) + c̃1n

−2N2 + c̃2n
−2β log n+ c̃3N

−2β + c̃4n
−2

where N = 2J0 < 2J = n and c̃1 = 2c21/3, c̃2 = 2c22, c̃3 = M2
f (1− 2−2β)−1 and c̃4 = 4c21/3.

For the estimator to be consistent, we need the MISE to tend to 0 as n→∞, therefore
we need N/n → 0 and N → ∞ as n → ∞. In this case, the second term is much smaller
than the first one, and logN < log n. Therefore, to find the optimal N (and hence the
optimal J0) that minimises the upper bound on the MISE, we can consider just 2 remaining
terms:

MISE(f̂J0) ≤ σ2N

n
(1 + o(1)) + c̃3N

−2β(1 + o(1))

This expression is minimised when N = cn1/(2β+1), that is, when 2J0 = c2J/(2β+1) which
implies that J0 = J

2β+1
(1 + o(1)) as n→∞ (and hence as J →∞).

Therefore, the linear wavelet estimator with J0 = J
2β+1

has MISE bounded by

MISE(f̂J0) ≤ Cn−2β/(2β+1)

that is, it achieves the global minimax rate of convergence, and it has the same rate of
convergence as the kernel estimator with the optimal bandwidth.

Note that this estimator is non-adaptive, that is, we need to know β, the smoothness
of the unknown function, to estimate f well. The wavelet thresholding estimator with the
threshold (1 + d)σ

√
2 log n for any d ∈ (0, 1) (that is, slightly larger than the universal

threshold) achieves the optimal rate of convergence (up to a factor of log n) adaptively,
that is, without using the smoothness of f .
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11 Gaussian and Dirichlet Processes

We encountered stochastic processes when we discussed noise in gravitational wave detectors
and then again in the discussion of Time Series. Another application of stochastic processes
is to generate probability distributions, as the relative frequencies of different outcomes of
the stochastic process over long time intervals. We will be concerned with two particular
types of stochastic process.

• Gaussian processes: These are infinite dimensional generalisations of the Normal
distribution and realisations of these are random fields.

• Dirichlet processes: These are infinite dimensional generalisations of the Dirichlet
distribution, and realisations of these are probability distributions.

11.1 Gaussian processes

A multivariate Gaussian distribution returns values of a finite set of random variables. A
natural extension is to regard the set of random variables as the values of some random
field at certain points. To generate the full random field we need an infinite dimensional
Gaussian distribution, which is a Gaussian process. Formally we denote a random field,
y(x), generated by a Gaussian process via

y(x) ∼ GP(m(x), k(x,x′))

where m(x) and k(x,x′) are the mean and covariance function of the Gaussian process. For
simplicity of notation we assume that the random field is single valued at each point, but
the extension to multivariate outputs is straightforward.

Formally, a GP is an infinite collection of variables, any finite subset of which are dis-
tributed as a multivariate Gaussian. For a set of parameter points {xi}, including, but not
limited to, the training set D,

[y(xi)] ∼ N(m, K) , (136)

where the mean vector and covariance matrix of this Gaussian distribution are fixed by the
corresponding functions of the GP,

[m]i = m(xi) , [K]ij = k(xi,xj) , (137)

with probability density function

P ({y(xi}) =
1√

(2π)N |K|
exp

(
−1

2

∑

i, j

(y(xi)−m(xi))
[
K−1

]
ij

(y(xj)−m(xj))

)
. (138)

Gaussian processes are often used for interpolation. In that context, the training set D
represents the set of known values of the field, e.g., the results of computational simulations
at certain choices of input parameters, which we denote by ỹ(xi). The Gaussian process
is constrained by this training set and then used to predict the value of the field at new
points in the parameter space, with associated uncertainties. If the values of the field at the
training points are not known perfectly, but have uncertainties εi ∼ N(0, σ2

i ), the expression
above takes the same form but with the replacement

[K]ij = k(xi,xj) + σ2
i δij.
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Even with perfect simulations it can be advantageous to include a small error term, as this
helps with inversion of the covariance matrix.

The mean and variance of the GP determine how the function is interpolated across the
parameter space. It is common in regression to set the mean of the Gaussian process to zero,
but specifying the covariance function is central to GP regression as it encodes our prior
expectations about the properties of the function being interpolated. Possibly the simplest
and most widely used choice for the covariance function is the squared exponential (SE)

k(xi,xj) = σ2
f exp

[
−1

2
gab(xi − xj)

a(xi − xj)
b

]
, (139)

which defines a stationary, smooth GP. In Eq. (139), a scale σf and a (constant) metric gab for
defining a modulus in parameter space have been defined. These are called hyperparameters

and we denote them as ~θ = {σf , gab}, with Greek indices µ, ν, . . . to label the components
of this vector.

When the set of points, {xi} coincides with the training set, the probability in Eq. (138)
is referred to as the hyperlikelihood, or alternatively the evidence for the training set; it is
the probability that that particular realisation of waveform differences was obtained from a
GP with the specified mean and covariance function. The hyperlikelihood depends only on
the hyperparameters and the quantities in the training set, so we denote it as Z(~θ|D). The
log hyperlikelihood is

lnZ(~θ|D) = −N
2

ln(2π)

−1

2

∑

i, j

(y(xi)−m(xi)) [k(xi,xj)]
−1 (y(xj)−m(xj))

−1

2
ln |det [k(xi,xj)]| . (140)

The values of the hyperparameters can be fixed to their optimum values ~θop, defined as
those which maximise the hyperlikelihood:

∂Z(~θ|D)

∂θµ

∣∣∣∣∣
~θ= ~θop

= 0 . (141)

An alternative approach is to consider the hyperparameters as nuisance parameters in ad-
dition to the source parameters x, and marginalise over them while sampling an expanded
likelihood,

Λexpanded(x, ~θ|D) ∝ L(x|~θ,D)Z(~θ|D). (142)

The disadvantage of this approach is that the hyperlikelihood is expensive to compute and
the inclusion of extra nuisance parameters slows down any application of the GP. In contrast,
maximising the likelihood is a convenient heuristic which is widely used in other contexts
and allows all the additional computation to be done offline.

Having fixed the properties of the covariance function by examining the training set, we
can now move on to using the GP as a predictive tool. As mentioned above, the defining
property of the GP is that any finite collection of variables drawn from it is distributed as a
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multivariate Gaussian in the manner of Eq. (138). Therefore, the set of variables formed by
the training set plus the field at a set of extra parameter points {y(zj)} is distributed as

[
y(xi)
y(zj)

]
∼ N (m,Σ) , Σ =

(
K K∗
KT
∗ K∗∗

)
, (143)

where K is defined in Eq. (137) and the matrices K∗ and K∗∗ are defined as

[K∗]ij = k(xi, zj) , [K∗∗]ij = k(zi, zj) . (144)

The conditional distribution of the unknown field values at the new points, given the observed
values in D, can now be found and is given by

p({y(zi)}) ∝ exp

[
−1

2

∑

j,k

(y(zj)− µj)Σ−1jk (y(xk)− µk)
]

(145)

where the GPR mean and its associated error are given by

µi = m(zi) +
∑

j,k

[K∗]ji
[
K−1

]
jk

(ỹ(xk)−m(xk)) , (146)

Σij = [K∗∗]ij −
∑

k,l

[K∗]ki
[
K−1

]
kl

[K∗]lj . (147)

11.2 The covariance function

The properties of the covariance function play an important role in determining the nature
of the Gaussian process and its behaviour when used for regression. The only necessary
requirement on a covariance function is that it is positive definite; i.e. for any choice of
points {xi}, the covariance matrix Kij = k(xi,xj) is positive definite. However, there are
other properties which are not required, but are still desirable.

The covariance function (and the corresponding GP) is said to be stationary if the co-
variance is a function only of ~τ = x1 − x2, furthermore it is said to be isotropic if it is a
function only of τ ≡ |~τ | = |x1−x2|.1 Isotropy of a GP implies stationarity, but the converse
is not true.

In the following subsections, we consider two aspects that enter the definition of the
covariance function:

1. specifying the distance metric in parameter space gab;

2. specifying the functional form of the covariance with distance k(τ),

These cannot be completely separated; there exists an arbitrary scaling, α of the distance τ →
ατ which can be absorbed into the definition of the covariance, k(τ) → k(τ/α). However,
provided the steps are tackled in order, there is no ambiguity.

1We have yet to define a metric on parameter space with which to take the norm of this vector (see
Sec. 11.2.2), but all that is required here is that a suitably smooth metric exists.
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11.2.1 The metric gab

One simple way to define a distance τ between two points in parameter space, and the way
used in the SE covariance function in Eq. (139), is to define τ 2 = gab(x1 − x2)

a(x1 − x2)
b,

where gab are constant hyperparameters. This distance is obviously invariant under a simul-
taneous translation of x1 → x1+∆ and x2 → x2+∆; therefore, this defines a stationary GP.
For a D-dimensional parameter space, this involves specifying D(D+ 1)/2 hyperparameters
gab.

More complicated distance metrics (with a larger number of hyperparameters) are possi-
ble if the condition of stationarity is relaxed, i.e. gab → gab(x). Given a family of stationary
covariance functions, a non-stationary generalisation can be constructed. A stationary co-
variance function can be considered as a kernel function centred at x1; k(x1,x2) ≡ kx1(x2).
Allowing a different kernel function to be defined at each point x1, a new, non-stationary
covariance function is k(x1,x2) =

∫
d~u k~u(x1)k~u(x2).

2 Applying this procedure to a D-
dimensional SE function generates a non-stationary analogue

k(xi,xj) = σf
∣∣Gi
∣∣1/4 ∣∣Gj

∣∣1/4
∣∣∣∣
Gi + Gj

2

∣∣∣∣
−1/2

exp

(
−1

2
Qij

)
, (148)

where

Qij = (xi − xj)
a(xi − xj)

b

(
Giab + Gjab

2

)−1
, (149)

and Giab = inv[gab(xi)] is the inverse of the parameter-space metric at position xi. Provided
that the metric gab(x) is smoothly parameterised this non-stationary SE function retains the
smoothness properties discussed earlier.

The generalisation in Eq. (148) involves the inclusion of a large set of additional hyper-
parameters to characterise how the metric changes over parameter space; for example one
possible parameterisation would be the Taylor series

gab(x) = gab(x0) + (xc − xc0)
∂gab(x)

∂λc

∣∣∣∣
x=x0

+ . . . (150)

with the hyperparameters gab(x0), ∂gab(x)/∂λc, and so on. The inclusion of even a single
extra hyperparameter can incur a significant Occam penalty which pushes the training set
to favour a simpler choice of covariance function. For this reason most applications use
stationary GPs.

An alternative to considering non-stationary metrics is instead to try and find new coordi-
nates λ̃ ≡ λ̃(x) such that the metric in these coordinates becomes (approximately) stationary.
Such transformations are very problem specific and finding them typically requires expert
knowledge of the context of the application.

11.2.2 The functional form of k(τ)

The second stage of specifying the covariance function involves choosing the function of
distance k(τ). In general whether a particular function k(τ) is positive definite (and hence

2To see that k is a valid covariance function consider an arbitrary series of points {xi}, and the sum over
training set points I =

∑
i,j aiajk(xi,xj); for k to be a valid covariance it is both necessary and sufficient

that I ≥ 0. Using the definition of k gives I =
∫

d~u
∑

i,j aiajk~u(xi)k~u(xj) =
∫

d~u (
∑

i aik~u(xi))
2 ≥ 0.
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Figure 51: Plots of the different generalisations of the SE covariance function discussed in
Sec. 11.2.2. The left-hand panel shows the PLE function, the centre panel shows the Cauchy
function, and the right-hand panel shows the Matérn function; in all cases the value of σf was
fixed to unity. In each panel the effect of varying the additional hyperparameter is shown by
the three curves. For the PLE covariance the case η = 2 recovers the SE covariance, while
for the Cauchy and Matérn covariances the case η →∞ recovers the SE covariance. Figure
reproduced from Moore et al. (2015).

is a valid covariance function) depends on the dimensionality D of the underlying space (i.e.
x ∈ RD); however, all the functions considered in this section are valid for all D. Several
choices for k(τ) are particularly common in the literature, including

• The squared-exponential covariance function (which has already been introduced),
given by

kSE(τ) = σ2
f exp

(
−1

2
τ 2
)
. (151)

• The power-law exponential (PLE) covariance function, given by

kPLE(τ) = σ2
f exp

(
−1

2
τ η
)
, (152)

where 0 < η ≤ 2. The PLE reduces to the SE in the case η = 2.

• The Cauchy covariance function, given by

kCauchy(τ) =
σ2
f

(1 + τ 2/2η)η
, (153)

where η > 0. This recovers the SE function in the limit η →∞.

• The Matérn covariance function, given by

kMat(τ) =
σ2
f2

1−η

Γ(η)

(√
2η τ

)η
Kη

(√
2η τ

)
, (154)

where η > 1/2, and Kη is the modified Bessel function of the second kind. In the limit
η →∞, the Matérn covariance function also tends to the SE.

Fig. 51 shows the functional forms of the covariance functions. They have similar shapes;
they return a finite covariance at zero distance which decreases monotonically, and tends
to zero as the distance becomes large. In the case of regression this indicates that the
values of the field at two nearby points in parameter space are closely related, whereas the
values at two well separated points are nearly independent. The PLE, Cauchy and Matérn
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function can all be viewed as attempts to generalise the SE with the inclusion of one extra
hyperparameter η, to allow for more flexible GP modelling. All three alternative functions
are able to recover the SE in some limiting case, but the Matérn is the most flexible of the
three, due to its differentiability properties.

We will see in section 11.3 that the mean-square differentiability of a GP is determined
by the differentiability of its covariance function at τ = 0. The SE covariance function is
infinitely differentiable at τ = 0, and so the corresponding GP is infinitely (mean-square)
differentiable. The PLE function is infinitely differentiable at τ = 0 for the SE case when
η = 2, but for all other cases it is not at all differentiable. In contrast, the Cauchy function
is infinitely differentiable at τ = 0 for all choices of the hyperparameter η. The Matérn
function, by contrast, has a variable level of differentiability at τ = 0, controlled via the
hyperparameter η. The GP corresponding to the Matérn covariance function in Eq. (154)
is ζ-times mean-square differentiable if and only if η > ζ. This ability to modify the differ-
entiability allows the same covariance function to successfully model a wide variety of data.
In the process of maximising the hyperlikelihood for the training set over hyperparameter η,
the GP learns the (non-)smoothness properties favoured by the data, and the GPR returns
a correspondingly (non-)smooth function.

11.2.3 Compact support and sparseness

All of the covariance functions considered up until this point have been strictly positive;

k(τ) > 0 ∀τ ∈ [0,∞) . (155)

When evaluating the covariance matrix for the training set Kij this leads to a matrix where
all entries are positive definite; i.e., a dense matrix. When performing the GPR it is necessary
to maximise the hyperlikelihood for the training set with respect to the hyperparameters.
This process involves inverting the dense matrix Kij at each iteration of the optimisation
algorithm. Although this procedure is carried out offline, it can still become prohibitive for
large training sets. For large training sets the determinant of the covariance matrix is also
typically small which contributes to making the covariance matrix hard to invert.

One potential way around these issues is to consider a covariance function with compact
support,

k(τ) > 0 τ ∈ [0, T ] ,

k(τ) = 0 ∀τ ∈ (T,∞) ,
(156)

where T is some threshold distance beyond which we assume that the waveform differences
become uncorrelated. This leads to a sparse, band-diagonal covariance matrix, which is much
easier to invert. Care must be taken when specifying the covariance function to ensure that
the function is positive definite (which is required of a GP): if the SE covariance function is
truncated, then the matrix formed from the new covariance function is not guaranteed to be
positive definite.

It is possible to construct covariance functions which have the requisite properties and
satisfy the compact support condition in Eq. (156). These are typically based on polynomials.
One such series of polynomials was proposed by Wendland. These have the property that
they are positive definite in RD and are 2q-times differentiable at the origin. Therefore the
discrete parameter q is in some sense analogous to the η hyperparameter of the Matérn
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Figure 52: Plots of the first few Wendland polynomial covariance functions. All these func-
tions have compact support, k(τ) = 0 for τ > 1. As the value of q increases the functions
become smoother near the origin. Figure reproduced from Moore et al. (2015).

covariance function in that it controls the smoothness of the GP. Defining β to be

β =

⌊
D

2

⌋
+ q + 1 (157)

and where Θ(x) denotes the Heaviside step function, the first few Wendland polynomials
kD, q(τ) are given by,

kD, 0(τ) = σ2
fΘ(1− τ)(1− τ)β , (158)

kD, 1(τ) = σ2
fΘ(1− τ)(1− τ)β+1 [1 + (β + 1) τ ] , (159)

kD, 2(τ) =
σ2
f

3
Θ(1− τ)(1− τ)β+2 [ 3 + (3β + 6) τ

+
(
β2 + 4β + 3

)
τ 2
]
, (160)

kD, 3(τ) =
σ2
f

15
Θ(1− τ)(1− τ)β+3

[
15 + (15β + 45) τ

+
(
6β2 + 36β + 45

)
τ 2

+
(
β3 + 9β2 + 23β + 15

)
τ 3
]
. (161)

The Wendland polynomials are plotted in Fig. 52. Other types of covariance functions with
compact support have also been proposed and explored in the literature, but we will not
discuss them here.

11.3 Continuity and differentiability of GPs

Before moving on to some examples, we give proofs concerning the continuity and differen-
tiability of GPs. Let x1,x2,x3 . . . be a sequence of points in parameter space which converges
to a point x∗, in the sense lim`→∞ |x` − x∗| = 0. The GP Y (x) is said to be mean-square
(MS) continuous at x∗ if

lim
`→∞

E [(Y (x`)− Y (x∗)|Y (x`)− Y (x∗))] = 0 , (162)

where E[. . .] denotes the expectation of the enclosed quantity over realisations of the GP.
Here we are using (a|b) to denote the inner product on the output space of the GP. Normally
this will be a vector of real or complex values, in which case this reduces to the usual norm.
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MS continuity implies continuity in the mean,

lim
`→∞

E [Y (x`)− Y (x∗)] = 0 . (163)

There are other notions of continuity of GPs used in the literature, but the notion of MS
continuity relates most easily to the properties of the covariance function.

The mean and the covariance of a GP are defined as

m(x) = E[Y (x)] , (164)

k(x1,x2) = E[(Y (x1)−m(x1)|Y (x2)−m(x2))] .

Using these, Eq. (162) can be written as

lim
`→∞
{k(x∗,x∗)− 2k(x`,x∗) + k(x`,x`)

+ (m(x∗)−m(x`)|m(x∗)−m(x`))} = 0 , (165)

and using the continuity of the mean in Eq. (163) gives

lim
`→∞

[k(x∗,x∗)− 2k(x`,x∗) + k(x`,x`)] = 0 . (166)

This condition is satisfied if the covariance function, k(x1,x2), is continuous at the point
x1 = x2 = x∗. Therefore, we arrive at the result that if the covariance function is continuous
in the usual sense at some point x∗, then the corresponding GP is MS continuous at this
point.3 In the special case of stationary covariance this reduces to checking continuity of
k(~τ) at ~τ = 0, and in the special case of isotropic covariance, continuity of k(τ) at τ = 0.

We now move on from continuity to consider differentiability. In the spirit of Eq. (162),
the notion of taking the MS derivative of a GP is defined as

∂Y (x)

∂xa
= l.i.m

ε→0
Xa(x, ε) , (167)

where l.i.m is read limit in MS and

Xa(x, ε) =
Y (x + ε êa)− Y (x)

ε
(168)

with parameter-space unit vector êa. This definition can be extended to higher-order deriva-
tives in the obvious way.

The MS derivative of a GP is also a GP; this follows simply from the fact that the sum
of Gaussians is also distributed as a Gaussian. The covariance of Xa(x, ε) is given by

Kε(x1,x2) = E [(Xa(x1, ε)− Ξ(x1, ε)|
Xa(x2, ε)− Ξ(x2, ε))] (169)

where Ξa(x, ε) = E[Xa(x, ε)]. It then follows that

Kε(x1,x2) =
k(x1 + ε,x2 + ε)− k(x1,x2 + ε)

ε2

+
k(x1 + ε,x2)− k(x1,x2)

ε2
. (170)

3A GP is continuous in MS if and only if the covariance function is continuous, although this is not proved
here.
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Substituting this into Eq. (167), the limit in MS becomes a normal limit, and the result is
obtained that the MS derivative of a MS continuous GP with covariance function k(x1,x2)
is a GP with covariance function ∂2k(x1,x2)/∂xa1∂xa2. In general the covariance function of
the ζ-times MS differentiated GP

∂ζY (x)

∂xa1∂xa2 . . . ∂xaζ
, (171)

is given by the 2ζ-times differentiated covariance function

∂2ζk(x1,x2)

∂xa11 ∂xa12 ∂xa21 ∂xa22 . . . ∂x
aζ
1 ∂x

aζ
2

. (172)

From the above results relating the MS continuity of GPs to the continuity of the covari-
ance function at x1 = x2 = x∗, it follows that the ζ-times MS derivative of the GP is MS
continuous (the GP is said to be ζ-times MS differentiable) if the 2ζ-times derivative of the
covariance function is continuous at x1 = x2 = x∗. So it is the smoothness properties of the
covariance function along the diagonal points that determine the differentiability of the GP.4

11.4 Example applications of Gaussian processes

Example: interpolation of a quadratic We consider first a toy problem in which we
generate noisy measurements, {yi}, at 200 points, {xi}, randomly chosen in the interval
[0, 1] according to

yi = −2− 3xi + 5x2i + εi, εi ∼ N(0, 0.152).

We then fit a Gaussian process to a training set comprising a subset of these points. We
use a squared exponential covariance function and optimize the hyperparameters over the
training set. The results of this procedure are shown in Figure 53. Results are represented
by the expectation value and 1σ uncertainty computed from the fitted Gaussian process as a
function of x. We see that the Gaussian process is well able to recover the true function, even
with as a few as ten training points. This is a particularly simple function and if we knew
that the relationship was quadratic there would be no need to use a Gaussian process to fit
the data. In Figure 54 we show the result of fitting a quadratic model to the same data. As
expected, the fit is slightly better, but not hugely so. The advantage of the Gaussian process
approach is that you do not need to know the form of the model in advance, and avoid the
problem of model mis-specification. In Figure 55 we show the result of fitting a linear model
to the same data. We see that we end up with a very precise, but wrong, representation
of the curve. Gaussian process regression models have greater flexibility and should always
converge to the true underlying function in the limit that the number of observations tends
to infinity.

Example: waveform model errors We will now consider a few examples from the
gravitational wave literature. There are many of these that have all appeared since ∼
2015, so we cannot describe them all but we will mention a few different examples. The
first application of Gaussian processes in a gravitational wave context was to characterise
uncertainties coming from waveform model errors (Moore & Gair (2014)). A Gaussian
process was used to model the error in a particular waveform model family over parameter

4It can be further shown that if a covariance function k(x1,x2) is continuous at every diagonal point
x1 = x2 then it is everywhere continuous.
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Figure 53: Gaussian process fit to noisy measurements of a quadratic, for different sizes of
training set, as stated in the title of each panel.
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Figure 54: As Figure 53, but now fitting a quadratic linear model to the same data.
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Figure 55: As Figure 53, but now fitting a linear model to the same data.
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Figure 56: Comparison between uncorrected, corrected and “true” likelihood for inference
with waveform models that include model error. The corrected likelihood uses a Gaus-
sian process to model the waveform error and then marginalises this out of the likelihood.
Reproduced from Moore et al. (2015).

space. Using a training set based on model errors estimated as the difference between
two different approximate waveforms, a Gaussian process model for the waveform error
was produced. As this distribution is Gaussian and so is the normal gravitational wave
likelihood, the waveform error can then be marginalised out of the likelihood to give an
alternative marginalised likelihood for use in parameter estimation. This marginalised
likelihood took the form

L(~λ) ∝ 1√
1 + σ2(~λ)

exp


−1

2

∥∥∥s−H(~λ) + µ(~λ)
∥∥∥
2

1 + σ2(~λ)


 . (173)

In this ~λ is the vector of parameters characterising the gravitational wave signal, the quantity
µ(~λ) is the Gaussian process estimate for the model error, and shifts the distribution to

eliminate the error, and σ2(~λ) is the variance in the Gaussian process, which widens the
posterior to account for the uncertainty in the model error. Use of this marginalised likelihood
corrects for biases in parameter estimation, as illustrated in Figure 56.

Example: waveform interpolation In Williams et al. (2020), Gaussian processes were
used to directly model the gravitational waveform, rather than its error. A set of numerical
relativity waveforms were used to create a training set to which a Gaussian process model
was fitted. In Figure 57 we show some random draws from the GP model at a certain point in
parameter space and compare these to two different waveform approximants evaluated at the
same point. We see that the GP uncertainty band includes all of the different approximants
and so automatically factors in waveform uncertainty.

Example: population inference In Taylor & Gerosa (2018), a Gaussian process was
used as a means to interpolate the output of binary population synthesis code over the
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FIG. 2. GPR predictions, compared to NR. One hundred draws from the Gaussian process (left panel) for a non-
spinning configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 0.625) with a total mass of 60-solar masses, shown as light grey
lines compared to a single analytical approximant model, IMRPhenomPv2 in blue. The mean draw from the Gaussian process
is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding the mean. In the
right panel the distribution of mismatches between the samples and both phenomenological waveforms are shown, with the
vertical lines representing the mismatch between the GPR and the phenomenological waveform. The di↵erences between the
phenomenological model and the GPR model waveforms are seen to also exist between the phenomenological model waveforms
and the NR-derived waveform, plotted here in pink.

FIG. 3. Non-spinning waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning, equal-mass
configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 1.0) with a total mass of 60-solar masses, shown as light grey lines compared
to two analytical approximant models, SEOBNRv4 and IMRPhenomPv2 in red and blue respectively. The mean draw from the
Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding
the mean. In the right panel the distribution of mismatches between the samples and both phenomenological waveforms are
shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

able, and in principal can facilitate accurate inference
on detected signals. However, the expense of produc-
ing them limits their coverage of the parameter space;
as a result of this lack of coverage, and the considerable
time requirements to produce new waveforms, any infer-
ence method which relied solely on NR techniques could
not hope to satisfy the requirement to rapidly charac-
terise signals, and would not be practical in a scenario
where multiple events are detected every month. Phe-
nomenological models, which can be evaluated rapidly,
are available, which attempt to interpolate across a large
volume of the parameter space, but the accuracy of the
waveforms which they produce can be di�cult to assess.

Ths leads to the possibility of introducing biases into the
inferred properties of the system which generated the sig-
nal.

In this paper we have laid-out an approach to improv-
ing the accuracy of gravitational wave parameter estima-
tion in the context of limited template availability by im-
plementing a waveform approximant model using GPR,
providing not only a point-estimate of the waveform at
any point in the BBH parameter space, but also a distri-
bution of plausible waveforms, allowing the uncertainty
of the interpolation to be taken into account during the
analysis. In contrast to previous attemptes to produce a
GPR model for GW waveforms, such as [7], our model

Figure 57: Comparison of several approximate waveform models to random draws from a
Gaussian process interpolant trained on numerical relativity simulations. Reproduced from
Williams et al. (2020).

space of physical parameters that characterise them. The resulting model, continuous over
parameter space, was then used to infer properties of the underlying astrophysical population
based on a set of observed compact binary inspirals. Figure 58 shows simulated inferred
posteriors on the population parameters that were produced in this way.

Example: equation of state uncertainties Landry & Essick (2019) and Essick,
Landry & Holz (2019) used a Gaussian process to model the equation of state of a neutron
star, p(ρ). The hyperparameters of the Gaussian process were constrained using a training
set including numerical equation of state simulations. The resulting model generates random
equations of state which can be used to marginalise equation of state uncertainties out of
inference on gravitational wave signals from binary neutron stars. Figure 59 shows a set of
random draws of the equation of state from the Gaussian process.

11.5 Dirichlet Processes

Recall that a Dirichlet distribution generates a set of K random values, {xi}, constrained to
take values with 0 ≤ xi ≤ 1 for all i and

∑
xi = 1. The distribution depends on a vector of

parameters ~α = (α1, . . . , αK) and has pdf

p(~x) =
1

B(~α)

K∏

i=1

xαi−1i , B(~α) =

∏K
i=1 Γ(αi)

Γ
(∑K

j=1 αj

) .

A realisation of a Dirichlet distribution is a probability mass function for a discrete distribu-
tion with K possible outcomes. A Dirichlet process generalises the Dirichlet distribution
to infinite dimensions and a realisation of a Dirichlet process is a continuous probability
distribution. A Dirichlet process is characterised by a base distribution, P , and a con-
centration parameter, a. The base distribution is a probability measure on a set S. The
process X is a Dirichlet process, denoted X ∼DP(P, a) if for any measurable finite partition
of the set S, {Bi}ni=1, the probability distribution on this partition generated by X is

(X(B1), X(B2), . . . , X(Bn)) ∼ Dir(aP (B1), aP (B2), . . . , aP (Bn)). (174)

In the limit a → 0, the Dirichlet pdf, which is proportional to xαi−1i , places a logarithmi-
cally increasing weight towards the lower boundary of the variable range. Draws from this
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10

FIG. 6. Testing the accuracy of our GP emulator for the model of Eq. (33). In the left panel we create training data on an
evenly-spaced 8⇥8 grid in log10 �1,2 space (red points). We achieve a data compression factor of ⇠ 500, then train a GP in each
of the reduced basis features. The GP prediction is compared to the analytic result across �1,2 space by taking the GP-mean
(o↵set by 1 �), rotating back to the full z1,2 basis, then finding the maximum di↵erence from the analytic value in any z1,2 bin.
Low accuracy locations are used to inform the positions at which new simulations are performed. These additional points are
shown in the right panel as empty circles, where we see that their addition improves accuracy across the entire hyper-parameter
space.
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FIG. 7. Comparison of posterior recoveries of population
hyper-parameters from a catalog of 100 sources with spin-
alignment distribution given by Eq. (33) [82]. The true hyper-
parameter coordinate, {�1 = 0.45, �2 = 0.45} is indicated via
intersecting white dashed lines.

will always be positive. We can now predict the distri-
bution values in compressed parameter space, and rotate
this back into the full parameter space to construct the
final predictions.

Figure 6 shows validation studies for di↵erent num-
bers of initial training data. For an evenly-spaced grid of
8 ⇥ 8 = 64 training datasets in hyper-parameter space,
we achieve an accuracy of better than ⇠ 50% across the
majority of the space. The worst performance occurs in
parts of hyper-parameter space that are voids of simula-
tions. We find the 36 worst accuracy locations, and add
these as additional simulations to improve accuracy to
better than 10%. Similar accuracy is given by an Latin-
hypercube design of 100 training datasets.

We now test our framework on a simulated popula-
tion, consisting of 100 sources drawn from p(z1, z2) with
� = {�1 = 0.45, �2 = 0.45}. A comparison of the joint
posterior probability distribution of {�1, �2} as recovered
by the analytic model [Eq. (33)] and the GP framework
is shown in Fig. 7. The GP framework is trained on 100
simulations from a Latin-hypercube design; we use this
design because it is our standard approach for e�ciently
sampling the high-dimensional hyper-parameter space of
binary stellar evolution, and it gives similar emulation ac-
curacy to the adaptive design in the right panel of Fig. 6.
In this analysis, we have propagated all uncertainties
from the GP prediction and the hyper-parameters of the
trained GP covariance function into the final model. The
agreement is excellent, with the true hyper-parameter co-
ordinate lying well within the 68% credible region of both
techniques. We have not incorporated the e↵ect of indi-
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FIG. 8. Posterior probability distribution of progenitor metal-
licity Z, as inferred by an analysis of the current BH catalog
in Table I using a model for the chirp mass distribution that
is conditioned on simulations from [25]. Dashed vertical lines
marks the 68% and 90% confidence intervals.

was trained (including some sharp features), namely that
the distribution of chirp masses shifts to smaller values
as the progenitor metallicity is increased. Physically, this
is because stellar winds are weaker in stars with lower
metallicity, that thus tend to form heavier BHs like the
ones detected by Advanced LIGO [25, 34–36]. The events
of the current binary BH catalog are shown as vertical
bands corresponding to the 90% credible region of chirp
mass.

C. BSE Population Synthesis

To further showcase the e↵ectiveness of our statistical
framework, we now consider a more elaborate set of input
data. We perform a dedicated program of population-
synthesis simulations to predict properties of BH binaries
from isolated binary stars.

We use a modified version of the public population syn-
thesis code BSE [18, 90]. The modifications implemented
here are the same described in Refs. [36, 91]: wind mass
loss prescriptions according to Ref. [92] and core-collapse
remnant mass relationship following Ref. [20]. These
minimal updates are necessary to generate any BHs of
masses & 10M� like the ones that are now detected,
and thus to attempt a comparison with the Advanced-
LIGO–Advanced-Virgo data. We stress, however, that
this study is not meant to rival with the full complex-
ity of state-of-the-art binary evolution codes, but rather
highlight the potential of our inference pipeline.
BSE requires us to specify distributions of binary stars

on their zero-age main sequence (ZAMS), and a variety
of flags encoding assumptions of the underlying stellar
physics. We distribute primary masses m1 from an ini-
tial mass function p(m1) / m�2.3

1 in [5, 100]M�; mass
ratios q = m2/m1 uniformly in [0, 1]; initial separations

R uniformly in log10 in [10, 105]R�; eccentricities e from
a thermal distribution p(e) / e; and redshifts z uniformly
in comoving volume using the Plank cosmology [93] (c.f.
Ref. [29] for similar choices).

The evolutionary flags are the quantities that should be
treated as hyper-parameters, and that could potentially
be constrained with current and future catalogs of GW
events. For simplicity, we present results considering a
3-dimensional hyper-parameter space, but our method is
fully generalizable and scalable to higher dimensions. We
fix all flags to their default value in BSE, except for the
following three:

1. Metallicity of the ZAMS star: Z. As already
highlighted above, the progenitor metallicity has a
large impact on the properties of the resulting BHs.
Metallicity strongly a↵ects massive star winds and
thus the mass that remains available to form the
final compact object [22, 24, 92, 94–97]. Here we
consider a metallicity range 0.0001  Z  0.03
where Z� = 0.02 [18].

2. Kicks imparted to BHs at formation: �k. As
stars collapse (perhaps exploding into supernovae),
asymmetries in the emitted material and neutri-
nos may impart a recoil to the newly formed com-
pact object (e.g. Ref. [98]). Observations of galactic
pulsar proper motions suggest that NS recoils are
well modeled by a single Maxwellian distribution
with 1D root-mean-square �k ⇠ 265 km/s [99, 100].
Whether BHs receive any kick at formation is still
a matter of debate. On the one hand, X-ray binary
measurements hint at large kick velocities [101] (c.f.
also Ref. [102] for a GW constraint). Conversely,
theoretical arguments and simulations suggest that
kicks for BHs might be suppressed because of ma-
terial falling back after the explosion [98, 103, 104].
This is a clear case where a method like ours, al-
lowing for a direct estimate of �k, might show its
potential. We consider BH recoils in the range
0 km/s  �k  265 km/s independently of BH mass
or other parameters (see Ref. [40] for a discussion
of this point).

3. E�ciency of the common envelope: ↵ce. After the
first star collapses, the binary system consists of a
BH and an extended star. As this second star ex-
pands into a supergiant, it may overflow its Roche
Lobe and undergo unstable mass transfer to the
BH [105–108]. The envelope of the giant engulfs
the companion BH. In this process, known as the
common-envelope stage, a fraction ↵ce of the bi-
nary’s orbital energy is transferred to the enve-
lope, thus hardening the binary. In the standard
evolutionary channel considered here, common en-
velope evolution is the key stage to produce BHs
able to merge within a Hubble time. The details
of the common envelope phase are still very uncer-
tain [109–112], and are arguably one of the most

Figure 58: Posteriors on physical parameters of the astrophysical source population inferred
form simulated observations of binaries. Inference relied on a Gaussian process model that
interpolated the output of the population synthesis codes over the astrophysical parameter
space. Reproduced from Taylor & Gerosa (2018).

distribution will therefore be singletons, with all xi’s bar one equal to zero. For small a the
Dirichlet distribution will therefore tend to be discretized, with probability concentrated at
a small number of locations.

In the limit a→∞, the distribution becomes more and more concentrated at its mode,
which is at xi = P (Bi). Every realisation of Dir(aP (B1), aP (B2), . . . , aP (Bn)) therefore
returns (P (B1), . . . , P (Bn)) and every realisation of the Dirichlet process thus gives the base
distribution.

These limits show that the Dirichlet process generates discretized representations of the
base distribution, with the level of discretization decreasing as a → ∞. To illustrate this,
we show in Figure 60 and 61 some realisations of a Dirichlet process, for a fixed base distri-
bution, P = N(0, 1), and various choices of a. In each figure, we represent the realisation
of the Dirichlet process by a set of 1000 random draws from the realised probability distri-
bution. It is clear that for small a, only a small number of values are returned, showing
high discretisation, but as a increases the number of distinct values is increasing and the
distribution becomes a closer and closer approximation to the base distribution.

11.5.1 Sampling Dirichlet processes

A realisation of a Dirichlet process is a probability distribution on S and hence infinite
dimensional. Drawing such a realisation is therefore very difficult. However, in practice
what we need is not the realisation of the Dirichlet process itself but a set of samples from
that realised distribution, which is much easier to obtain. If the full realisation is required,
this can be evaluated by looking at the distribution of a large number of samples. This is
how the realisations shown in Figures 60 and 61 were produced.

There are several different algorithms for drawing samples from a random realisation of
a Dirichlet process, X ∼DP(P, a). The chinese restaurant process generates a sequence
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FIG. 1. Example synthetic EOSs drawn from our (left) agnostic and (right) informed nonparametric priors, constructed
as mixture models with equal prior odds for hadronic, hyperonic, and quark compositions. Draws from the prior are colored
according to the maximum nonrotating NS mass they support: blue for Mmax � 1.93 M�, and black otherwise. Candidate
EOSs from the literature, used as input for our GPs, are shown in red (see Table VII). Vertical lines indicate once, twice and
six times nuclear saturation density.
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where ⇤(↵) is the mass-tidal deformability relation implicitly defined by "(↵). It is worth noting that several sets of
samples are publicly accessible. Our specific choice is not expected to significantly a↵ect our conclusions, although
our precise quantitative results will depend on issues like waveform systematics discussed in Ref. [41]. Drawing "(↵)

from our prior and associating this marginal likelihood with each sample generates the posterior process. This also
allows us to immediately estimate the evidence for each prior, up to a common normalization constant:
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where we draw Ni mass realizations for each of the N↵

EOS realizations. Within this Monte-Carlo algorithm,
we optimize our KDE model for L(d| · · · ) by selecting
bandwidths that maximize a cross-validation likelihood
based on the public samples (see Appendix B).

The overarching composition-marginalized priors are
constructed hierarchically, assuming equal prior odds for

each composition, which is to say

P (data|X) =

1

3

⇥
P (data|X; Hadronic)

+ P (data|X; Hyperonic)

+ P (data|X; Quark)
⇤

(15)

for informed and agnostic priors processes separately. In

Figure 59: Random draws from a Gaussian process model of the equation of state of a
neutron star. Reproduced from Essick et al. (2019).
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Figure 60: Sample realisations of a Dirichlet process, X ∼DP(N(0, 1), a), for a = 1 (top
row), a = 10 (middle row) and a = 100 (bottom row). In each figure we show 1000 samples
from the given realisation of the Dirichlet process. Within each row, the figures show three
distinct realisations of the stated Dirichlet process.
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Figure 61: As in Figure 60, these figures show sample realisations of a Dirichlet process,
X ∼DP(N(0, 1), a), for a = 1000 (top row) and a = 10000 (bottom row). In each figure we
show 1000 samples from the given realisation of the Dirichlet process. Within each row, the
figures show three distinct realisations of the stated Dirichlet process.
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of samples {xi} for i ≥ 1 as follows

• with probability a/(a+ i− 1) draw xi from P;

• with probability nx/(a+ i− 1) set xi = x, where nx is the number of previous obser-
vations of xj = x for j < i.

This procedure is called the chinese restaurant process by analogy with a restaurant with an
infinite number of tables, each serving a different dish, and each with infinite seating capacity.
A new diner may choose to sit at a new table, or may choose to sit at a table where people
are already eating. The probability of choosing a particular table is proportional to the
number of people observed already sitting at that table and enjoying the offered dish.

Closely related to this is the Polya Urn scheme. In that construction we start with an
urn containing a black balls. At each step of the algorithm, a ball is drawn at random from
the urn. If the ball is black, we generate a new color randomly, color a new ball this color
and return it to the urn along with the black ball. The corresponding sample is the new
color. If the ball drawn is coloured, then we take a new ball, color it the same color as the
sampled ball, and return both of them to the urn. The corresponding sample is the color
of the ball that was drawn. It is clear that the distribution of colors produced in this way
corresponds to the samples generated form the chinese restaurant process.

A final approach to constructing a sample from a random realisation of a Dirichlet process
is the stick breaking construction. This approach explicitly generates a discrete distribu-
tion, X, which is a realisation of the Dirichlet process. The distribution is given by

X =

(
LH∑

l=1

plδUl

)
+

(
1−

LH∑

l=1

pl

)
δU0

p1 = V1, pl =

(
l−1∏

j=1

(1− Vj)
)
Vl, l ≥ 2, p0 = 1−

LH∑

l=1

pl

Vl ∼ Beta(1, a), l = 1, . . . , LH , Ul ∼ P, l = 0, 1, . . . , LH , (175)

where we take the limit LH → ∞, but in practical applications the procedure is truncated
at some finite, but sufficiently large, value.

11.5.2 Example applications

The main application of Dirichlet processes is in the field of Bayesian nonparametrics, where
they are used as a prior for unknown probability distributions. We will provide two examples.

Example: B-spline regression In the nonparametric regression chapter we encoun-
tered the notion of smoothing splines for regression. In that context, the knots of the spline
were fixed at the locations of the observed data points. The number of knots is therefore
fixed for any given data set and grows as n→∞. The smoothing was controlled by the regu-
larisation parameter. Another approach to nonparametric regression is to allow the number
of spline points to vary and let the data choose the optimal number. Even greater flexibility
comes from allowing the locations of the spline knots to vary. In Edwards & Gair (2020) they
presented a Bayesian nonparametric regression algorithm that uses B-splines (an alternative
basis for cubic splines than the one presented in this course), but with the number and
location of the knots both allowed to vary and adapt to the data. The knot locations were
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The freespline algorithm outperforms the
LEX algorithm in terms of average MSE for both
test functions here. Upon visual inspection, we find

exactly why this is the case. We see in Figure 4
that the LEX model manages to pick up the first lo-
cal extremum (minimum), which is large, but fails

to pick up the secondary local extremum (maxi-
mum), which is small. We also see in Figure 5 that
the LEX algorithm cannot handle sharp and abrupt

extrema.
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Fig. 4: One comparison of methods for the ExpSum
example.
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Fig. 5: One comparison of methods for the
Triangle example.

We have demonstrated that freespline out-
performs LEX when one extremum is small

(ExpSum), or when we have a sharp, and abrupt
extremum (Triangle). Additional benefits of
freespline is that it is publicly available on CRAN,

it provides credible regions which give a level of un-
certainty around the fitted curve, and that it can

handle more than two local extrema, which will be
demonstrated explicitly in the following sections.

3.2 Simulation Study

In this section, we run a comprehensive simulation

study, using the following three test functions from
DiMatteo et al. (2001):

1. The true function is a natural spline on [0, 1]

with internal knots (0.2, 0.6, 0.7) and coe�-
cients � = (20, 4, 6, 11, 6). Zero-mean Normal
noise with standard deviation � = 0.9 is added

to this curve.
2. The true function is f(x) = sin(x) +

2 exp(�30x2) for x 2 [�2, 2]. Zero-mean Nor-
mal noise with standard deviation � = 0.3 is

added to this curve.
3. The true function is a natural spline on [0, 1]

with internal knots (0.4, 0.4, 0.4, 0.4, 0.7) and

coe�cients � = (2,�5, 5, 2,�3,�1, 2). Zero-
mean Normal noise with standard deviation
� = 0.55 is added to this curve.

We run the freespline algorithm on 1,000 dif-
ferent noise realizations for each test function, at
sample sizes of n = (27, 28, 29), computing average
MSE, estimated standard errors, mean run-time,

and uniform coverage probabilities.. An example
of each function can be seen in Figure 6.

Results are presented in Tables 2 and 3. We see

that as n increases, MSE and SE decrease for all
test functions. We also see that computing time
roughly increases linearly with n, and that the
mode number of B-splines stays reasonably con-

stant when changing n. Note that these test func-
tions all have a signal-to-noise ratio (SNR) of ⇠ 3,

where SNR = sd(signal)
sd(noise) . We also present results for

SNR equal to 1 and 10 in Appendix 2.

Table 2: Average MSE with estimated standard
errors in brackets.

n = 27 n = 28 n = 29

1 0.0747 (0.0353) 0.0361 (0.0164) 0.0188 (0.0080)
2 0.0097 (0.0045) 0.0048 (0.0020) 0.0025 (0.0010)
3 0.0280 (0.0154) 0.0147 (0.0078) 0.0082 (0.0051)

One benefit of the freespline algorithm is its
ability to compute credible regions from posterior

Figure 62: Nonparametric regression fit to noisy measurements of the function f(x) =
26 exp(−3.25x)−4 exp(−6.5x)+3 exp(−9.75x) using the freespline algorithm with a Dirichlet
process prior on the probability density determining the knot locations. Figure reproduced
from Edwards & Gair (2020).

represented by a random cumulative density function, H, defined on the interval [0, 1], with
the j’th of k − r internal knots located at xj = H(j/(k − r)). The random density H was
assigned a Dirichlet process prior. In Figure 62 we show the result of using this algorithm
to fit noisy measurements of a function

f(x) = 26 exp(−3.25x)− 4 exp(−6.5x) + 3 exp(−9.75x).

We see that the freespline algorithm is able to capture all of the turning points of this
function, while another widely used regression algorithm, lex, is not. In Figure 63 we show
another application of that algorithm to obtain a nonparametric fit to the power spectrum
of temperature fluctuations in the CMB measured by Planck. The nonparametric fit can
be compared to the best fit cosmological model prediction. There is some evidence that the
data does not support the up-tick at low multipoles predicted by the model. In fact, there
has been extensive debate in the literature about whether the l = 2, 3 multipoles are in fact
lower than predicted, and these results seem to support that. There is also weak evidence
that the data suggests the second and third peaks are further apart than the standard ΛCDM
model predicts. Observations of this nature (if they were to be robust in future data sets)
would help guide modifications to the model, and this would be much harder without the
nonparametric regression tool.

Example: LIGO sky localisation In Del Pozzo et al. (2018), a Dirichlet process
Gaussian mixture model (DPGMM) was used to produce a smooth interpolation of the
output of LALInference sampling. The aim was to produce a continuous representation of
the source localisation volume (sky location and distance), to target electromagnetic follow-
up. The Dirichlet process was used as a prior to generate the centres (in 3-dimensions)
of Gaussians. The sum of these Gaussians, with weights, was used as a representation
of the smooth posterior probability and then constrained by the set of posterior samples
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crowave background (CMB) at microwave and in-
frared frequencies, with the aim of testing the-
ories of the early Universe. The mission was a

great achievement, providing a clear picture of an
extremely simple Universe (Akrami et al., 2018;
Aghanim et al., 2018).

However, CMB observations have highlighted
some puzzles in modern cosmology, most notice-
ably the inconsistencies in the local rate of ex-

pansion of the Universe inferred indirectly from
the CMB relative to the value measured locally
using Type Ia Supernovae (Bernal et al., 2016;

Reiss et al., 2016; Akrami et al., 2018; Aghanim
et al., 2018). One explanation is that the standard
model of cosmology, the so-called Lambda Cold
Dark Matter (⇤CDM) model (which is paramet-

ric), does not tell the full story. ⇤CDM is the sim-
plest model that could describe the Universe on
large scales, but it has shown remarkable agree-

ment with all astronomical measurements until
very recently. Departures from ⇤CDM could arise
from modifications in the true theory of gravity
away from general relativity, the existence of new

fields or particles or di↵erences in the properties
of the dark matter and dark energy components of
the Universe. It is therefore natural to ask whether

the CMB data are supporting the standard model
of cosmology, or whether conclusions are being bi-
ased by using a parametric fit rather than a non-

parametric one.

One interesting output from the Planck mis-
sion was the CMB temperature (TT) power spec-

trum, which shows the amplitude of temperature
anisotropies in the CMB as a function of the an-
gular scale, labelled by multipole index, l (which
is inversely proportional to angular scale). Infor-

mation contained in this spectrum (peaks and
troughs) can be used to precisely estimate under-
lying cosmological parameters and therefore allow

us to make statements about the early Universe
(Akrami et al., 2018).

In this section we use the freespline method

to fit the CMB TT power spectrum1, and com-
pare this to the “best fit” model, based on the
⇤CMD model. ⇤CMD uses a parametric model
described in (Akrami et al., 2018; Aghanim et al.,

2018), essentially using Gaussians to model peaks
in the spectrum. We demonstrate the usefulness of

1 These data are publicly available at http://pla.

esac.esa.int/pla/#cosmology.

nonparametric models for these data, showing that
we can get mostly consistent results with minimal
specifications, thus allowing the data to “speak for

itself”. Our fit can be seen in Figure 8.
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Fig. 8: Fitting the Planck CMB TT power spec-

trum. The ⇤CMD model is plotted as the blue line
and our posterior median curve is plotted as the
red dots.

In Figure 8, we can see that the “best fit” model
(blue curve), based on the ⇤CDM, fits the Planck
data extremely well, except at low values of the

multipole moment, where we expect a small rise in
temperature fluctuation. Our estimated curve (red
dots) fits the data well, and follows the ⇤CDM

model nearly perfectly, except at low values of the
multipole moment, where there is an up-tick in the
fit predicted by ⇤CDM. At low multipoles the ob-

served spectrum is more uncertain because these
correspond to large angular scales and there are
therefore fewer independent samples on the sky
that can be used to measure them. Models pre-

dict that the spectrum should have an up-tick at
low multipoles, but we see that this up-tick is not
supported by the data. There has been some de-

bate about whether the lowest (l = 2, 3) multipoles
are in fact significantly lower than predicted by
⇤CDM (see for example Bielewicz et al. (2004)).
This could be due to foreground contamination.

The fact that we find no evidence for the up-tick
may be evidence in support of this, which fitting
the parametric model cannot reveal.

Our fitted curve supports the notion of six
peaks in the TT spectrum, but not seven as
reported by the Planck Collaboration (Akrami

et al., 2018; Aghanim et al., 2018). We also see
some slight evidence that the first and second

Figure 63: Nonparametric regression fit to the CMB temperature power spectrum, as mea-
sured by Planck. The dashed red line is the freespline fit to the data, while the blue line is
the prediction of the best fit cosmological model. Figure reproduced from Edwards & Gair
(2020).

previously generated by LALInference. In Figure 64 we show the result of this analysis,
the distribution of posterior credible volumes computed for a set of injections and using the
DPGMM to obtain the credible volumes. This is the only application of Dirichlet processes
in a gravitational wave context to date, but they are likely to be powerful tools for fitting
nonparametric population models as the number of observations becomes large enough to
make this possible.
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Figure 3. Cumulative fractions of events with localization vol-

umes smaller than the abscissa value. The top panel shows the

50% credible volume CV0.5, the middle shows the 90% credi-
ble volume CV0.9 and the bottom shows the searched volume V⇤.

The 68% confidence interval for the cumulative distribution is en-

closed by the shaded regions; this does not include the inherent
uncertainty in the volume estimates.

can be be used to find the most probable source galaxies
within a matter of minutes of the LALInference analy-
sis finishing, making it useful for prompt multimessenger
follow-up activities.

We constructed localization volumes for a catalogue
of BNS signals appropriate for the early operation of the

advanced-detector era (Singer et al. 2014; Berry et al. 2015;
Farr et al. 2016). We have verified that the three-dimensional
localizations are well calibrated (cf. Cook et al. 2006; Sidery
et al. 2014b) and have confirmed that when distance is
marginalised out, these volumes reduce to sky areas that
are consistent with two-dimensional KDE results. Our cred-
ible volumes have the expected proportionality with SNR,
scaling roughly / %�6

net.
Our results show that localizations for detections dur-

ing early observing runs would be ⇠ 104–105 Mpc3, corre-
sponding to ⇠ 102–103 potential host galaxies within the
GLADE catalogue (Dálya et al. 2018). Approximately half
of events have searched volumes which contain 102 galaxies
or fewer, and a few percent of events have searched volumes
which contain a single galaxy. Since our results do not in-
clude the e↵ects of calibration uncertainty, they would be
lower bounds for any actual detections: for the (O1-like) HL
recoloured data set, we find that the median 90% credible
volume is 5 ⇥ 104 Mpc3 and for the HL Gaussian data set
it is 4 ⇥ 104 Mpc3; moving ahead to the (O2-like) HLV sce-
nario, the median 90% credible volume is 1 ⇥ 105 Mpc3 for
the Gaussian data set. Greater sensitivity of the detectors
means that we can detect signals from a greater distance and
hence are sensitive to sources in a larger volume. However,
localization does improve as further detectors are added to
the network: the median 90% credible volume in the HLV
scenario for a two-detector network is 3 ⇥ 105 Mpc3 but for
a three-detector network it is 1⇥105 Mpc3. The localization
improves rapidly as the SNR of the signal increases, and the
best localization occurs when there is significant SNR from
each of the three detectors. Addition of further detectors,
such as KAGRA (Aso et al. 2013) or the proposed LIGO-
India detector (Unnikrishnan 2013; Abbott et al. 2017a),
could further improve localization and the prospects of iden-
tifying a counterpart.
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Figure 64: Cumulative distribution function of 90% credible volumes for events observed
by the ground-based detector network. The credible volumes were computed by fitting a
Dirichlet Process Gaussian Mixture Model to posterior samples generated by LALInference.
Figure reproduced from Del Pozzo et al. (2018).


