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1. Introduction
Why do we need a numerical hydrodynamics?

The compressibility is essential for astrophysics fluid.



1. Introduction

Why do we need a numerical hydrodynamics?

Finite Difference 

e.g., the 2nd order accurate finite difference of the 1st derivative,

It is based on the Taylor expansion, i.e., the function f is differentiable. 

⇒ Shock waves are the discontinuity of the physical variables. 

The Taylor expansion is not applicable. ⇒ We need a numerical technique 
to handle the shock. 



2. Finite Difference vs Finite Volume

One-dimensional advection equation with a constant speed

The exact solution is 

An initial profile advects in the positive x-direction with the speed a.
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Initial profile ⇒ t > 0 profile



2. Finite Difference vs Finite Volume

Let’s solver the equation numerically. We apply the 1st order in time-2nd

order in space for the finite difference.

Von Neumann analysis reveals that the scheme is unstable for an arbitrary 
value of the Courant-Friedrich-Lewy number  



2. Finite Difference vs Finite Volume

Let’s define a volume average by

Then, we integrate the equation with Gauss’s theorem;

The finite volume method relies on how to evaluate a numerical flux 
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3. 1st-order up-wind scheme

where we generalize to a < 0 case. For example, for a > 0

Therefore, the finite volume equation implies
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3. 1st-order up-wind scheme

For a < 0

Therefore, the finite volume equation implies

u

x
i i+1

The 1st-order up-wind scheme takes into 
account from which direction the flow 
comes in.

⇒ Physically correct.



3. 1st-order up-wind scheme
Example

It correctly captures the advection without unphysical oscillations. But, the 
initial discontinuity is smeared out. 
For example, for a > 0

So, the task is to find a higher-order accurate scheme.



4. High Resolution Shock Capturing scheme

Monotonicity preserving

If a function of u is monotonic in x for a given time tn, it is also monotonic n 
x for the next time step tn+1. 

Any hydrodynamics schemes should guarantee the monotonicity preserving 
property.  Otherwise, unphysical oscillations will appear. 

Godunov’s theorem
Any schemes higher than the 2nd order which has a following form,

cannot preserve the monotonicity where bk is constant and kR/L is non-
negative integer. 



4. High Resolution Shock Capturing scheme
Proof

The monotonicity preserving means if Δun
i > 0, Δun+1

i>0 should be 
satisfied for any value of i.

Let’s consider the case in which bk0 < 0 for a particular value of k0. Then, if 
Δun

i =0 is satisfied except for i = k1, for i=-k0+k1, 

Δun+1
-k0+k1  has a sigh opposite to Δun

k1. 
⇒ Violating the monotonicity preserving⇒ bk≥0 for all the value of k



4. High Resolution Shock Capturing scheme
Proof (cont.)

Truncation error for the scheme of the form 

The truncation error disappears if



4. High Resolution Shock Capturing scheme
Proof (cont.)

Therefore, the p-th order accurate in space and time if and only if the 
following conditions are satisfied

where 0 ≤ q ≤ p and ν=aΔt/Δx. Let’s consider the 2nd order accurate 
scheme;

However, 



4. High Resolution Shock Capturing scheme
Proof (cont.)

The equality of the last expression holds only for useless case;

bk=0 for all the values of k or ν is an integer. 

⇒ Godunov’s theorem shows that there are no monotonicity-preserving 
linear scheme of the form

that are second or higher-order accurate.
Lax-Wendroff scheme (2nd-order in time and space)



4. High Resolution Shock Capturing scheme
Example.

Therefore, to construct a higher-order scheme, we need a non-linear 
scheme.  Let’s consider the 1st-order up-wind scheme and the 2nd-order 
Lax-Wendroff scheme:



4. High Resolution Shock Capturing scheme
Similarly, 

Introducing a flux limiter function Bi+1/2 such that the Lax-Wendroff scheme 
is reduced to be the up-wind scheme at the discontinuity.

Bi+1/2  is a function of un
i+k with k = 0,±1,±2, .,.

⇒ The scheme is nonlinear in un
i (Circumventing Godunov’s theorem).



4. High Resolution Shock Capturing scheme

Then,

Finally, 



4. High Resolution Shock Capturing scheme

A sufficient condition to suppress numerical oscillation is

a > 0        n    n+1           a < 0     n+1  n

i – 1       i i + 1
i – 1       i i + 1



4. High Resolution Shock Capturing scheme

This condition yields

Further simplification is possible if we only consider a sufficient condition 
with 0 ≤|ν| ≤ 1.

This condition is automatically satisfied if



4. High Resolution Shock Capturing scheme

The hatched region is the sufficient condition for the limiter function of the 
monotonicity-preserving scheme
For ri < 0, Bi+1/2⇒0 (up-wind scheme)

Bi+1/2 

ri

Bi+1/2=2

Bi+1/2=2ri 



4. High Resolution Shock Capturing scheme

One example of the flux limiter, 

Bi+1/2(ri)=minmod(1,bri)= 1 when |bri|>1 and bri ≥0,
bri when |bri|<1 and bri ≥0,
0 when bri <0

Bi+1/2 

ri

Bi+1/2=2

Bi+1/2=2ri 

(1/b, 1)



4. High Resolution Shock Capturing scheme

Total Variation Diminishing (TVD)

TVD condition is 

Once a TVD scheme is employed, the monotonicity-preserving property is 
guaranteed. 



4. High Resolution Shock Capturing scheme

Theorem
Suppose that a class of non-linear scheme is written as

Sufficient condition for scheme to be TVD is as follows:

Proof



4. High Resolution Shock Capturing scheme

Proof (cont.)

Therefore, if we invent a higher-order scheme in the form of

The scheme is TVD if 



4. High Resolution Shock Capturing scheme

One example of HRSC scheme = M(onotone) U(pstream-centered) 
S(cheme) for C(onservation) L(aw)

Volume averaged quantity

Piecewise parabolic cell reconstruction



4. High Resolution Shock Capturing scheme

MUSCL scheme

1. The first term is reduced to be the up-wind scheme for the non-smooth flow
2. The second and third terms are higher-order representation of the gradient
3. Φ is the flux-limiter, one choice is the minmod function

i-1/2 i+1/2



4. High Resolution Shock Capturing scheme

MUSCL scheme

For a > 0,
if the flow is not smooth, the 1st-order upwind scheme is recovered 

For a < 0, 
if the flow is not smooth, the 1st-order upwind scheme is recovered 



4. High Resolution Shock Capturing scheme

Minmod function and compression parameter

Φ=1 is desired for a wide range of r.
b should be large as much as possible. 

r

(1/b, 1)



4. High Resolution Shock Capturing scheme

Compression parameter is determined by the TVD condition



4. High Resolution Shock Capturing scheme

Compression parameter is determined by the TVD condition

In Harten’s theorem



4. High Resolution Shock Capturing scheme

Compression parameter is determined by the TVD condition

When

the first condition is the strongest and it gives

When

the 2nd condition is the strongest and it gives



4. High Resolution Shock Capturing scheme

MUSCL-PPM                                 1st-order up-wind

The discontinuity is correctly and sharply captured.



5. 1D Berger equation and characteristic curve
1D advection equation: f(u) = au
Characteristic speed = a = constant 
Characteristic curve: dx/dt = a

1D inviscid Berger equation: f(u)=u2/2
Characteristic speed = ∂f/∂u=u
Characteristic curve: dx/dt = u
1D adv. 1D Berger eq.

t 

x

t u(0,x)=1 (x<0)

u(0,x)=0 (x>0)

Shock wave appears.



Short summary of the 1st course

1. Finite volume method and 1st-order up-wind scheme is essential for 
Numerical Hydrodynamics. Caveat: Diffusive

2. Godunov’s theorem says there is no monotonicity-preserving linear 
scheme which is 2nd order or higher accurate. 

⇒ Necessary to invent a monotonicity-preserving non-linear scheme
One example = Introducing flux limiter

3. MUSCL scheme is one example of the higher-order monotonicity 
preserving scheme. 

Now, we know how to handle the scalar equation which may contain a 
discontinuity.
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6. Euler equation and characteristic speed

Euler equation

A solution may contain a shock wave where we can’t define differential.

Weak solution
Suppose that we have a support w(x,t) which has a finite value in a limited 
region of the spacetime and infinitely differentiable, U is a solution if

is satisfied for an arbitrary w.



6. Euler equation and characteristic speed

By performing the partial integral, 

Let`s consider i component for U and F and suppose Ui has an initial 
condition;

Suppose that a characteristic speed λ (will discuss later on)  is constant, 
we get a solution

In each region, this solution satisfies the original solution, but it is not along 
the characteristic curve.



6. Euler equation and characteristic speed

If we plug this solution in 

and consider a closed region (see figure), we can integrate along the line. 

From Stokes’s theorem, the 1st term is 

and the 2nd term is

t 

x

region A
region B



6. Euler equation and characteristic speed

Similarly, the 3rd and 4th terms are

Then, 

Therefore, to hold this equation for an arbitrary w, 

If we repeat the same procedure for the other components in U and F, 



6. Euler equation and characteristic speed

Rankine-Hugoniot relation (jump condition)

For the characteristic speed λ, we consider the non-conservative form of 
the Euler equation;

The eigen value of A is the characteristic speed λof the simple wave



6. Euler equation and characteristic speed

Let’s parameterize the group of the characteristic curves with λk as

Since φk is constant along the characteristics, 

For a simple wave Qk with λk

Therefore, 



6. Euler equation and characteristic speed

The Euler equation is

This gives us a constant when we across the characteristic (implying 
increasing φk direction) by 

It is called the generalized Riemann invariants.



6. Euler equation and characteristic speed

Also if we use the left eigen vector Lk of the matrix M with λk

If we define the differential dσ along the characteristic φk(x,t)=ξ

Therefore,

along the characteristics. It is called the Riemann invariant. 



6. Euler equation and characteristic speed

The characteristic speed and the eigen vectors of the Euler equation are 
calculated by

For λ1, the generalized Riemann invariant is 



6. Euler equation and characteristic speed
It is reduced to

Then, if we assume γ-law EOS p=(γ-1)ρε, it is integrated by

The entropy is conserved when we across the characteristic with λ1. From 
the definition of the sound wave



6. Euler equation and characteristic speed

If u increases when we across the characteristics, λ1 also increases. 

It presents the expansion wave (rarefaction wave)

If u decreases when we across the characteristics, λ1 also decreases. 

It present the compression wave (shock wave).

t 
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t 

x



6. Euler equation and characteristic speed

Similarly, for the characteristics with λ2, the generalized Riemann invariant is

Therefore, the velocity and pressure do not change when we across the 
characteristic. It presents the contact discontinuity.

Also, the Riemann invariant is

Therefore, the entropy is constant along the characteristics. It is called the 
entropy wave.



6. Euler equation and characteristic speed

Similarly, for the characteristics with λ3, the generalized Riemann invariant is

It present the expansion/compression wave. 

Short summary

1. Weak solution of the Euler equation results in the Rankine-Hugoniot Relation

2. Three characteristic waves appear; two expansion/compression waves and 
contact discontinuity

3. The Riemann/generalized Riemann invariants exists along/when we across the 
characteristics.



6. Euler equation and characteristic speed

Solving the Riemann problem analytically. Let’s consider a specific initial 
condition with 

With γ=1.4. 

This problem is called Sod’s problem. The sound speed is csL=1.4, 
csR=1.4x0.8. 

The wave structure is left-propagating rarefaction wave, the contact 
discontinuity, and the right-propagating shock.

x
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QR



6. Euler equation and characteristic speed

The wave structure is left-propagating rarefaction wave, the contact 
discontinuity, and the right-propagating shock.

The task is to calculate the intermediate state (2,3) for a given (1,4) sate.

x

Shock wave
Contact DiscontinuityRarefaction



6. Euler equation and characteristic speed

Let’s consider the Rankine-Hugoniot relation with shock wave-comoving 
frame (λ=0), [F]=0. 

From the first two equations, 

From the third equation with the γ-law EOS,



6. Euler equation and characteristic speed

Then, 

Also, 

We can solve the quadratic equation for p3/p4 by

If we go back to the inertia frame, 



6. Euler equation and characteristic speed

Then, 

From the Rankine-Hugoniot relation, 

If we plug λ and M4 in this equation, we get 



6. Euler equation and characteristic speed

Next, we consider the rarefaction wave (1,2). The generalized Riemann 
invariants are

Finally, if we consider the contact discontinuity, the velocity and pressure 
should be constant:
Then, we obtain



7. Roe’s method

Sod’s problem is a one example of the Godunov method (exact solution of 
the Riemann problem). But, it is infeasible to solve the Riemann problem 
from the computational point of view. 

We need to seek a numerical scheme for the hydrodynamics. 

Roe’s method is one of the representative method for the approximate 
Riemann solver. 

Let’s linearize the Euler equation, i.e., freezing the Jacobian Matrix by



7. Roe’s method

Roe proposed a matrix     which satisfies the following condition
(i) 
(ii)
(iii)

(i) and (iii) sound natural requirement. The condition (ii) is related to the 
Rankine-Hugoniot relation -λΔU +ΔF=0, i.e., the shock condition. 

We diagonalize the matrix such that 

Therefore, if the Rankine-Hugoniot relation is satisfied, the condition (ii) is 
satisfied. 



7. Roe’s method

With this matrix, the numerical flux is calculated by 

Before going to the detail of the matrix component, let’s understand why this 
scheme works. Suppose that the Jacobian matrix and eigen vectors are 
frozen,  



7. Roe’s method

is the three scalar equation for (R-1U). We can apply the method learned in 
lecture 1. The numerical flux with the 1st-order upwind scheme is  

c.f.

If we multiply by R



7. Roe’s method

This is nothing but the numerical scheme of the Roe’s scheme. 

Let’s derive the concrete form of the matrix    .
First, we define the parameter vector



7. Roe’s method
With this vector, 

Let’s define



7. Roe’s method
With the matrix B

Similarly, for F with the matrix C



7. Roe’s method

If we introduce the Roe average



7. Roe’s method
We can easily confirm the condition (i) and (iii) are satisfied

(i)
(iii)

Extension to higher-order is straightforward as we have learned in 
Lecture 1. For example, with MUSCL scheme with PPM reconstruction, 



7. Roe’s method

Example (Sod’s problem)



8. Summary

We have learned a basic of the numerical hydrodynamics.

1. The 1st-order up-wind scheme is necessary to capture the 
discontinuity correctly without numerical oscillations. 

2. Monotonicity-preserving non-linear scheme is necessary for the 
higher-order scheme.

3. The Euler equation has three characteristic and the Rankine-Hugoniot
relation is essential to capture the shock. 

4. By spectral decomposition of the Jacobian Matrix of the Euler 
equation, we can utilize the technique invented in the scalar equation. 
Roe’s scheme is the representative approximate Riemann solver.



8. Summary

Extension to more complicated system will be done (not straightforward) 
along the same procedure learned here. 

Extension 1. Magnetohydrodynamics (7 waves appear)

Extension 2. Special Relativistic Hydrodynamics (Conservative to Primitive 
conversion + Tabulated EOS)

Extension 3. Special Relativistic Magnetohydrodynamics (7 waves and C 
to P conversion + Tabulated EOS)

Extension 4. General Relativistic Hydrodynamics (Spacetime curvature)

Extension 5. General Relativistic Magnetohydrodynamics (Spacetime 
curvature) 


