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Problem Sheet 1: Frequentist Statistics and Stochastic Processes

Solutions to questions on Frequentist statistics

1. The pdf of the Beta(a, b) distribution is

p(x) =

{ 1
B(a,b)

xa−1(1− x)b−1 if 0 < x < 1

0 otherwise

where

B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx

is the Beta function. The mode is found by setting the derivative of the pdf to zero

(a− 1)xa−2(1− x)b−1 − (b− 1)xa−1(1− x)b−2 = 0 ⇒ (a+ b− 2)x = (a− 1).

So the mode is (a− 1)/(a+ b− 2) unless a+ b = 2, in which case the mode is x = 1.

To derive the other quantities we need to compute moments of the distribution.
This is most easily done using the identity

Beta(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

which you can use without proof 1. Using this identity we can prove

E(xn) =
Beta(a+ n, b)

Beta(a, b)
=

Γ(a+ n)Γ(a+ b)

Γ(a+ b+ n)Γ(a)
=

(a+ n− 1) . . . a

(a+ b+ n− 1) . . . (a+ b)
.

The mean is found by setting n = 1 in the above, giving a/(a + b). The variance
can be found using

var(X) = E(x2)− E(x)2 =
a(a+ 1)

(a+ b+ 1)(a+ b)
− a2

(a+ b)2
=

ab

(a+ b)2(a+ b+ 1)

and so on. The skewness is

γ1(X) =
2(b− a)

√
a+ b+ 1

(a+ b+ 2)
√
ab

and the excess kurtosis is

Ex. Kurt(X) =
6[(a− b)2(a+ b+ 1)− ab(a+ b+ 2)]

ab(a+ b+ 2)(a+ b+ 3)

Solutions that explained how to compute the results and quoted the final results (or
derived them using computer algebra packages) were acceptable.

1The proof involves writing Γ(m)Γ(n) =
∫∞
0

∫∞
0

e−uum−1e−vvn−1 dudv and doing a substitution

u = r2 cos2 θ, v = r2 sin2 θ. After this change of variables the radial part of the integral can be recognised

as Γ(m + n) immediately. The θ integral is 2
∫ π/2

0
cos2m−1 θ sin2n−1 θ dθ, which can be recognized as

Beta(m,n) by writing x = cos2 θ.



2. The joint distribution of (X, Y ) is

p(x, y) =
1√

2n+1πΓ(n/2)
y

n
2
−1e−

(x2+y)
2

since they are independent. We define two new random variables

T =
X√
Y
n

, U = Y.

The Jacobian matrix for the transformation from (x, y) to (t, u) is

J =

( ∂t
∂x

∂t
∂y

∂u
∂x

∂u
∂y

)
=

( √
n
y

− x
2y

√
n
y

0 1

)

from which we deduce the joint pdf of (T, U)

p(t, u) =
1

|J |
p(x, y) =

1√
2n+1nπΓ(n/2)

u
n−1
2 e

−u
2

(
1+ t2

n

)
.

We now integrate u out of the distribution to find p(t). We note∫ ∞

0

u
n−1
2 e

−u
2

(
1+ t2

n

)
du =

(
1 +

t2

n

)−n+1
2
∫ ∞

0

ũ
n−1
2 e−

ũ
2 dũ =

(
1 +

t2

n

)−n+1
2

Γ

(
n+ 1

2

)
2

n+1
2 .

Hence we deduce the pdf of t

p(t) =
Γ
(
n+1
2

)
√
nπ Γ

(
n
2

) (1 + t2

n

)−n+1
2

as required.

3. (a) This is the standard Birthday Party Problem. The birthday of each GW source
is independent and there are 365 possible birthdays. Therefore there are a total
of 365n possible ways in which the birthdays can be distributed through the
year. Out of these possibilities, the number of ways in which all the birthdays
are different is the number of ways to choose permutations of size n from a set
of 365 possibilities, which is 365Pn. The probability that all the birthdays are
different is therefore

365!

(365− n)! 365n
.

Evaluating this for n = 22 gives 0.524, while for n = 23 it gives 0.493, so once
23 events have been observed we are more likely than not to have two on the
same day.

(b) If the n events are distinct, then the probability that the new category of event
falls on the same date as one of the previous observed events is just n/365. If
we do not specify that the events are distinct then it is easiest to consider the
problem the other way around. The new event singles out 1 date out of 365 that
is special. The probability that a particular event in the first category is on a
different date is 364/365. The probability that all of the first class of events
are on different dates is (364/365)n and the probability that at least one of the



first category of events is on the same day as the new event is 1− (364/365)n.
As a LIGO example, the first binary neutron star event was observed after 10
binary black hole events had been observed. The probability that it would be
on the same date as a BBH merger is therefore 2.7%, so it would have been
surprising if it had coincided with a BBH.

(c) Working in time units of days, the stated rate is λ = 1/7. The separation of
events drawn from a Poisson process with rate λ follows independent E(λ) dis-
tributions. After observing n events, we have observed n− 1 event separations
and we are therefore interested in the minimum of n − 1 independent E(λ)
random variables. The probability that this minimum, m, exceeds 1 is

P(m > 1) = (P(X1 > 1))n−1 = e−
n−1
7 .

When n is large enough that this is less than 0.5, we are more likely than not
to have seen two events separated by less than 24 hours

e−
n−1
7 < 0.5 ⇒ n > 7 ln(2) + 1 = 5.85.

So once we have observed 6 events there is a better than 50% chance that there
will be two within 24 hours 2.

(d) In this formulation of the problem we ask about time rather than the number
of events, so we must marginalise over the latter. After observing for time t,
the number of observed events, n, follows a Poisson distribution with rate λt.
If n = 0 or n = 1 the separation of events is definitely more than 1 day. If
n ≥ 2 we must compute the probability that n events distributed randomly in
the interval [0, t) have a minimum separation greater than 1 day. Denoting the
latter by pn the probability that the minimum separation is greater than 1 day
is

P(m > 1) = e−λt

[
1 + λt+

∞∑
k=2

(λt)k

k!
pk

]
(1)

where λ = 1/7 as before. It remains to compute pn, which is the probability
that the minimum separation between n points distributed in [0, t) exceeds 1
day. This is equal to the probability that the minimum separation of n points
distributed in the interval [0, 1] exceeds 1/t. There is an extensive literature on
the “stick breaking problem”, i.e., the distribution of lengths of the pieces of a
unit length stick broken at random (see for example L. Holst, J. Appl. Prob.
17, 623-634 (1980), which has been uploaded to the course website along with
these solutions for those who are interested). The result we need here is the
probability that the first r intervals on a stick broken into n + 1 pieces all
exceed x = 1/t, which is (1 − rx)n+, where a+ = a if a > 0 and 0 otherwise.
In fact, we need the probability for the middle n − 1 intervals out of n + 1,
but as the stick is broken at random the distribution must be symmetric under

2One of the submitted solutions answered the different, but also interesting question, of how many
days would you have to observe before seeing two events on the same date. In that case, we want to use
the probability of seeing less than 2 events on a given day, which is p = (8/7)e−1/7 = 0.99072. After n
days, the probability that we have seen 2 or more events on a day is 1− pn, which is equal to 0.5 when
n = − ln(2)/ ln(p) = 74.33, so we would have to wait 75 days. This is about twice as long as we have to
wait to have two events separated by less than 24 hours.
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Figure 1: Probability that all event separation will exceed 24 hours as a function of
observation time (blue curve). The horizontal orange line indicates a probability of 0.5.
The blue curve reaches p = 0.5 at t = 41.4332.

permutations of the intervals and so this is the same as the probability for the
first n− 1 intervals. We conclude that

pn =

(
1− (n− 1)

1

t

)n

+

.

A direct proof of this result is given in the Appendix. Using this result in
Eq. (1) we can evaluate the probability as a function of observation time. This
is shown in Figure 1. The probability reaches 50% at t = 41.4332. During that
time, the expected number of observed events is 41.4332/7 = 5.92, which is
close to the n = 5.85 found (much more easily) in part (c).

4. Solving
Pr[Xj = 1]

Pr[Xj = 0]
= eρj , and Pr[Xj = 0] + Pr[Xj = 1] = 1

for Pr[Xj = 0] and Pr[Xj = 1] gives Pr[Xj = 0] = 1
1+eρj

and Pr[Xj = 1] = eρj

1+eρj
.

Putting these together, we can write Pr[Xj = xj] =
eρjxj

(1+eρj )
. The likelihood function

for (α, β) is

L(α, β;x) =
n∏

j=1

Pr[Xj = xj] =
n∏

j=1

eρjxj

(1 + eρj)
=

exp{
∑n

j=1(α + βzj)xj}∏n
j=1(1 + e(α+βzj))

.

[Note on sufficiency: let s1 =
∑n

j=1 xj, s2 =
∑n

j=1 zjxj, s = (s1, s2), g(s, α, β) =
exp{αs1+βs2}∏n

j=1(1+eρj )
and h(x) = 1. Then, from the Factorization Theorem, S = (S1, S2) =

(
∑n

j=1Xj,
∑n

j=1 zjXj) is sufficient for (α, β).]

To show minimal sufficiency, suppose that we have a second set of observations
w1, w2, . . . , wn on X.



The likelihood ratio is

L(α, β;x)

L(α, β;w)
=

exp
{
α
∑n

j=1 xj + β
∑n

j=1 zjxj

}∏n
j=1(1 + eα+βvj)∏n

j=1(1 + eα+βzj)exp
{
α
∑n

j=1wj + β
∑n

j=1 vjwj

} .
This will depend on (α, β) unless

∑n
j=1 xj =

∑n
j=1wj,

∑n
j=1 zjxj =

∑n
j=1 zjwj.

Therefore (S1, S2) =
(∑n

j=1Xj,
∑n

j=1 zjXj

)
is minimal sufficient for (α, β).

Note that the explanatory variables are assumed constant and known in each set
of observations. If these are not constant or are unknown then the set of sufficient
statistics is necessarily larger.

5. The cdf of X(n) is given by

F (x) = Pr[X(n) < x] = Pr[X1 < x,X2 < x, . . . , Xn < x]

= Pr[X1 < x]Pr[X2 < x] . . . P r[Xn < x] =
(x
θ

)n
,

for 0 ≤ x ≤ θ, since X1, . . . , Xn are independent. Therefore, f(x) = dF
dx

= nxn−1

θn
, for

0 ≤ x ≤ θ.
For a single observation,X ∼ U [0, θ]: E(X) = θ

2
and var(X) = E(X2)−[E(X)]2 =

θ2

3
− θ2

4
= θ2

12
.

Thus, if X̄ is the mean of n observations, we have E(X̄) = θ
2

and var(X̄) = θ2

12n
,

so E(2X̄) = θ and var(2X̄) = θ2

3n
.

Therefore, 2X̄ is unbiased with variance → 0 as n → ∞, hence it is a consistent
estimator.

E(X(n)) =

∫ θ

0

x
nxn−1

θn
dx =

n

(n+ 1)
θ, so E

(
n+ 1

n
X(n)

)
= θ

var(X(n)) =

∫ θ

0

x2
nxn−1

θn
dx−

[
n

n+ 1
θ

]2
=

nθ2

(n+ 2)
− n2θ2

(n+ 1)2

=
nθ2

(n+ 1)2(n+ 2)
[n2 + 2n+ 1− n2 − 2n] =

nθ2

(n+ 1)2(n+ 2)

Thus var
[
n+1
n
X(n)

]
= θ2

n(n+2)
. Hence (n+1)

n
X(n) is also an unbaised estimator for θ

with variance→ 0 as n→ ∞, and so is a consistent estimator.

Comment: (n+1)
n
X(n) is preferable to 2X̄ as an estimator for θ as both are unbiased

and consistent, but the former can be vastly more efficient.

6. Using θ to denote σ2, the likelihood is

L(θ) =
(
∏
xi)

θn
exp

{
−
∑
x2i

2θ

}
.



The Fisher matrix can be found from

l(θ) = −n log θ −
∑
x2i

2θ
,

∂l

∂θ
= −n

θ
+

∑
x2i

2θ2
,

∂2l

∂θ2
=

n

θ2
−
∑
x2i
θ3

⇒ E
(
∂2l

∂θ2

)
=

n

θ2
− nE(X2)

θ3

E(X2) =

∫ ∞

0

x3

θ
exp

(
−x

2

2θ

)
dx =

[
−x2 exp

(
−x

2

2θ

)]∞
0

+

∫ ∞

0

2x exp

(
−x

2

2θ

)
dx

= 2θ

∫ ∞

0

x

θ
exp

(
−x

2

2θ

)
dx = 2θ.

Giving

Iθ = −E
(
∂2l

∂θ2

)
= −

(
n

θ2
− n2θ

θ3

)
=

n

θ2
.

The Cramér-Rao lower bound is var (θ̂) ≥ (1+ ∂b
∂θ )

2

Iθ
,

i.e. var (θ̂) ≥ θ2

n

(
1 +

∂b

∂θ

)2

where b = bias (θ̂).

Since ∂l
∂θ

= n
θ2
( 1
2n

∑
x2i − θ) [= Iθ(θ̂ − θ)], the bound is attained by the unbiased

estimator θ̂ =
∑
X2

i /2n.

7. (a) Likelihood: L(θ;x) =
∏

xi

θn
exp

(
− 1

2θ

∑
x2i
)
.

For samples x and y consider the ratio L(θ;x)
L(θ;y)

=
∏

xi∏
yi
exp

(
− 1

2θ
(
∑
x2i −

∑
y2i )
)
.

This does not depend on θ if
∑
x2i =

∑
y2i , and thus the statistic T =

∑
X2

i

is a minimal sufficient statistic for θ.

(b) Using the Neyman Pearson Lemma, the critical region of the most powerful

test of H0 : θ = θ0 against H1 : θ = θ1 (θ1 > θ0) is given by L(θ1)
L(θ0)

≥ A, where A
is a constant.

i.e. logL(θ1)− logL(θ0) = −n log θ1−
1

2θ1

∑
x2i +n log θ0+

1

2θ0

∑
x2i ≥ logA

i.e.
1

2

(
1

θ0
− 1

θ1

)∑
x2i ≥ logA+ n log(

θ1
θ0
)

But
(

1
θ0
− 1

θ1

)
> 0 since θ1 > θ0. Thus, the critical region is of the form∑

x2i ≥ B, where B is some suitably chosen critical value. Therefore, the test
depends on the minimal sufficient statistic T .

For any θ1 > θ0, the test of H0 : θ = θ0 against H1 : θ = θ1 has the same
form and thus the test is an UMP test of H0 : θ = θ0 against the composite
alternative hypothesis H ′

1 : θ > θ0.

(c) f(x) = x
θ
exp

(
−x2

2θ

)
. If y = x2

θ
, dy

dx
= 2x

θ
and thus f(y) = f(x)|dx

dy
| =

1
2
exp

(
−y

2

)
. This is the p.d.f. of an exponential distribution with mean 2

which is a chi-squared distribution with 2 degrees of freedom, i.e. Yi ∼ χ2
2.

Therefore, under the null hypothesis that θ = θ0,

1

θ0

∑
X2

i =
∑

Yi ∼ χ2
2n,
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Figure 2: Power of the size 0.05 test as a function of θ. For θ = 1 the power coincides
with the size, 0.05, as expected.

using properties of i.i.d. (chi-squared) random variables, which can be used to
determine B, i.e. the critical value for a size α test is B = θ0χ

2
2n(1− α).

H : θ = 1 H ′ : θ > 1: With n = 5, the size of the test α = 0.05 and θ0 = 1, the
critical value is

B = 1 · χ2
10(0.95) = 18.31.

Under the alternative hypothesis, the test statistic,
∑
x2i , is distributed as θ

times a χ2
10 distribution. Therefore the power of the size α test is

P
(
χ2
10 >

χ2
10(1− α)

θ

)
.

This is plotted as a function of θ in Figure 2.

8. The Fisher Matrix is given by

Γij =

(
∂h

∂λi

∣∣∣∣ ∂h∂λj
)
, where (a|b) = 2

∫ ∞

0

ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sh(f)
df

where Sh(f) is the power spectral density of the detector noise. In this case we are
assuming that the source is only observed in the interval [fmin, fmax] and the PSD
is constant in that range and equal to Σ2. With these assumptions

(a|b) = 2
1

Σ2

∫ fmax

fmin

ã∗(f)b̃(f) + ã(f)b̃∗(f) df.



The derivatives of the waveform can be computed as

∂h̃

∂M
=

(
5

6
− i

{
5

128
(πMf)−5/3 +

3

128

(
3715

756
+

55

9
η

)
η−

2
5 (πMf)−2

})
h̃(f)

M
∂h̃

∂η
= i

3

128
(πMf)−1

(
11

3
η−

2
5 − 743

378
η−

7
5

)
h̃(f)

∂h̃

∂ϕc

= −ih̃(f)

∂h̃

∂tc
= 2πifh̃(f)

∂h̃

∂DL

= − 1

DL

h̃(f).

The key thing to note here is that all of the derivatives are proportional to h̃(f).
When we construct the inner product all terms in the Fisher Matrix are therefore
proportional to |h̃|2, which does not explicitly depend on ψ(f). The Fisher Matrix
elements therefore reduce to linear combinations of integrals of the form

G(α) =

∫ fmax

fmin

f−α df =
1

α− 1

(
fα−1
min − fα−1

max

)
.

The Fisher Matrix elements are therefore

ΓMM =
4A2

M2Σ2

(
25

36
G

(
7

3

)
+

25

16384
(πM)−

10
3 G

(
17

3

)
+

15

8192

(
3715

756
+

55

9
η

)
η−

2
5 (πM)−

11
3 G (6)

+
9

16384

(
3715

756
+

55

9
η

)2

η−
4
5G

(
19

3

))

ΓMη = − 3A2

32Σ2M
(πM)−1

(
11

3
η−

2
5 − 743

378
η−

7
5

)(
5

128
(πM)−

5
3G (5)

+
3

128

(
3715

756
+

55

9
η

)
η−

2
5 (πM)−2G

(
16

3

))
ΓMϕc =

A2

32Σ2M

(
5(πM)−

5
3G(4) + 3

(
3715

756
+

55

9
η

)
η−

2
5 (πM)−2G

(
13

3

))
ΓMtc = − 2πA2

32Σ2M

(
5(πM)−

5
3G (3) + 3

(
3715

756
+

55

9
η

)
η−

2
5 (πM)−2G

(
10

3

))
ΓMDL

=
10A2

2MΣ2DL

G

(
7

3

)
Γηη =

9A2

4096Σ2
(πM)−2

(
11

3
η−

2
5 − 743

378
η−

7
5

)2

G

(
13

3

)



Γηϕc = − 3A2

32Σ2
(πM)−1

(
11

3
η−

2
5 − 743

378
η−

7
5

)
G

(
10

3

)
Γηtc =

3πA2

16Σ2
(πM)−1

(
11

3
η−

2
5 − 743

378
η−

7
5

)
G

(
7

3

)
ΓηDL

= 0, Γϕcϕc =
4A2

Σ2
G

(
7

3

)
, Γϕctc = −8πA2

Σ2
G

(
4

3

)
, ΓϕcDL

= 0

Γtctc =
16π2A2

Σ2
G

(
1

3

)
, ΓtcDL

= 0, ΓDLDL
=

4A2

D2
LΣ

2
G

(
7

3

)
The inverse of the Fisher Matrix provides an estimate of parameter estimation
precision. We won’t attempt to write down the inverse, but it can be calculated on
a case by case basis using the preceding results.

Solutions to questions on Stochastic Processes

9. (a) As in the question description we denote the two masses by m1 and m2, the
total mass byM = m1+m2, the reduced mass by µ = m1m2/M , and the chirp
mass by

Mc =
m

3
5
1m

3
5
2

M
1
5

.

We will use geometric units throughout, i.e., we set c = G = 1 so we don’t
need to worry about keeping track of these factors.

i. For a Newtonian binary, the motion is equivalent to that of a body of
mass µ orbiting in a fixed Newtonian potential with mass M . Denoting
the orbital radius by a (it is also the semi-major axis for a circular binary),
the orbital frequency is given by

2πf =

√
M

a3

and the total energy of the binary is

E = −Mµ

2a
.

A. The GW amplitude is determined by the quadrupole moment of the
spacetime

h ∼ Ïjk
D
, Ijk =

∫
ρxixjdV.

For a binary, the density is only non-zero at the location of the objects.
Using the effective-one-body analogy we deduce

I ∼ µa2 exp(2πift)

where the frequency is now twice the orbital frequency because we are
taking squares of positions, which vary at that frequency. It follows
that

h ∼ 1

D
f 2µa2 ∼ 1

D
f 2µ

(
M

f 2

) 2
3

=
1

D
f

2
3
m1m2

M
1
3

=
1

D
M

5
3
c f

2
3 .



B. The GW energy loss is determined by

ĖGW ∼ D2ḣ2 =
...
I

2 ∼ µ2a4f 6 ∼ µ2f 6

(
M

f 2

) 4
3

= µ2M
4
3f

10
3 = M

10
3
c f

10
3 .

C. The rate of change of frequency is given by

ḟ ∼
√
M

a

d

dt

(
1

a

)
∼ 1

Mµ

√
M

a
Ė ∼ µM

1
3 (Mf)

1
3 f

10
3 = µM

2
3f

11
3 = M

5
3
c f

11
3 .

D. The Fourier transform of h(t) is given approximately by

h̃ ∼ h√
ḟ
∼ 1

D

M
5
3
c f

2
3

M
5
6
c f

11
6

=
1

D
M

5
6
c f

− 7
6 .

E. The characteristic strain is given by

hc ∼ h

√
f 2

ḟ
∼ 1

D
M

5
3
c f

2
3

f

M
5
6
c f

11
6

=
1

D
M

5
6
c f

− 1
6 .

F. The energy density of a GW background generated by a population of
these sources is given by

ρcΩGW(f) =

∫ ∞

0

N(z)

1 + z

(
fr

dE

dfr

)
fr=f(1+z)

dz.

For the inspiraling binaries the previous results give

f
dE

df
∼ f

Ė

ḟ
∼ M

5
3
c f

2
3

and so we find

ΩGW(f) ∼ M
5
3
c f

2
3

∫ ∞

0

N(z)

(1 + z)
1
3

dz.

ii. The energy of the binary is proportional to 1/a, hence we have

Ėhard ∝ µM
d

dt

(
1

a

)
= kµM

ρ∗
σ3

m2

a
∝ k

ρ∗m2µ

σ3
(Mf)

2
3 = k

ρm2µ

σ3
M

2
3f

2
3 .

iii. The previous derivation of the background energy density assumed that all
of the energy loss driving the frequency evolution was due to GW emission.
If there are other processes driving energy loss and hence frequency evo-
lution, the background is suppressed because not all of the orbital energy
lost is emitted as gravitational waves. In general we have f = f(E) and
hence ḟ = (df/dE)Ė and therefore

dEGW

df
=

ĖGW

(df/dE)[ĖGW + Ėother]
=

ĖGW

ĖGW + Ėother

(
dEGW

df

)
pure GW

.



The final bracketed expression denotes the background energy density in
the pure GW-driven evolution case. In the case of stellar hardening we
therefore find a modified expression for the GW background energy density

ρcΩGW(f) = M
5
3
c f

2
3

∫ ∞

0

N(z)

(1 + z)
1
3

M
10
3
c

M
10
3
c + k(ρm2µ/σ3)M

2
3f− 8

3 (1 + z)−
8
3

dz.

This can be simplified a bit more — for example, we notice that the factor

µM
2
3 in the hardening term is just M

5
3
c — but the above result is all we

need to answer the next few questions.

iv. If the sources are at a common redshift, z0, we can replace N(z) by a delta
function, δ(z − z0), and do the integral explicitly. It is then clear that we
have

ΩGW(f) ∼ f
2
3

1 + λf− 8
3

where
λ = k(ρm2/σ

3)M− 5
3

c (1 + z0)
− 8

3 .

This is a broken power-law, as required. For f ≪ 1 the term f− 8
3 dom-

inates in the denominator and we have ΩGW ∼ f
10
3 . This is the stellar

hardening dominated regime. For f ≫ 1 the constant term dominates
in the denominator and we find ΩGW ∼ f

2
3 . This is the GW dominated

regime and this is the standard result for GW backgrounds.

v. If a broken power law background were detected, it tells us about the
processes that drive the inspiral of the binary. In this example the power
at low frequencies (where hardening dominates) is suppressed relative to
that of a pure GW background (see Figure 3). The low frequency slope is
characteristic of whatever process drove the early evolution of the binaries
— a measurement of this tells you which physical process was important
at that time. The high frequency slope tells us about the late evolution
of the binary, and in this case the value f

2
3 is consistent with GW-driven

inspiral. The turn over point tells us about the relative efficiencies of
the two processes. In this example it occurs where f ≈ λ

3
8 and so a

measurement of that value tells us about the parameters that go into λ,
such as σ, ρ and the typical source redshift, z0.

vi. (OPTIONAL) No results here. If there is a distribution over masses, then
the background energy density involves an integral over the mass distribu-
tion as well as the redshift. Try playing around with different choices. Try
also including some dependence of ρ and σ on the binary properties. The
GW background in the PTA regime may well be suppressed by stellar pro-
cesses of the type described here. If we see that suppression we will want
to be able to interpret it in the context of models of the binary population.

(b) i. The average waveform power is

⟨h2⟩ = 1

2T

∫ T

−T

h2(t)dt =
1

2
√
QT

A2

D2

∫ √
QT

−
√
QT

cos2
(
2πf0√
Q
u

)
e−u2

du.

We see that beyond
√
QT ∼ few, the waveform is exponentially suppressed.

Hence, the duration of the signal is order ∼ 1/
√
Q. We take |

√
QT | ≲ 2

as a reasonable approximation.
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Figure 3: Example backgrounds. We show ΩGW(f) as a function of frequency for λ = 0.01
(purple), λ = 1 (green) and λ = 100 (red). Also shown, as a dashed red line, is the
background in the absence of stellar hardening.



For this choice, we find

⟨h2⟩ = A2

D2

√
π

8

(
erf(2) + e

−
(

2πf0√
Q

)2

Re

[
erf

(
2 + i

2πf0√
Q

)])
∼ A2

D2

with a pre-factor that is order 0.few.

ii. Using standard results for Fourier transforms, F [g] = g̃(f), including
F [exp(−t2)] =

√
π exp(−π2f 2), F [g(αt)] = g̃(f/α)/|α| and F [exp(2πif0t)g(t)] =

g̃(f − f0), we find

h̃(f) =
A

2D

√
π

Q

(
e−

π2

Q
(f−f0)2 + e−

π2

Q
(f+f0)2

)
.

We can use the fact that the time series is real to wrap onto only positive
frequencies and then we have

h̃(f) =
A

D

√
π

Q
e−

π2

Q
(f−f0)2 .

We see that the Fourier transform is also proportional to a Gaussian which
goes to zero exponentially when π2(f−f0)2/Q ∼few. Hence the bandwidth
is ∆f ∼

√
Q/π.

iii. Using the power ratio formula(
S

N

)2

≈ ⟨h2⟩
∆fSn(f)

and assuming white noise, Sn(f) = σ2, we have(
S

N

)2

≈ k
A2

D2
√
Qσ2

where k is a constant of order unity. This SNR could be achieved by
windowing the data (to the time range |

√
QT | ≲a few) and bandpassing

it (to the frequency range π|f − f0|/
√
Q ≲a few) and then comparing the

signal power to the average off-source noise power.

iv. Using the Fourier transform obtained above, the matched filtering SNR is(
S

N

)2

= 4

∫ ∞

0

|h̃(f)|2

Sn(f)
df =

4

σ2

A2π

4D2Q
e−

2π2

Q
(f−f0)2df ≈ A2

2D2σ2
√
Q

∫ ∞

−∞
e−

x2

2 dx

which is also equal to A2/(D2σ2
√
Q) times a constant of order unity.

We have found that the matched filtering SNR is essentially the same as
the burst search SNR, so we are not gaining anything by doing matched
filtering. We argued in lectures that matched filtering gained over a burst
search by a factor of the square root of the number of cycles spent near a
particular frequency. These sine-Gaussian sources are peculiar in that as
Q decreases so that the source spends more time near frequency f0, the
bandwidth also decreases so the burst power is increasingly concentrated —
we effectively have only ‘1 cycle’ in the vicinity of each relevant frequency.
This result does not necessarily mean matched filtering is no better than
a burst search — the SNR does not directly translate to a false alarm



probability. There may be many instrumental artefacts that could give
broadband power in the frequency domain which looks burst like, but
those artefacts would look nothing like the specific sine-Gaussian form of
the matched filter. Nonetheless, this problem illustrates why excess power
searches are quite effective for sources that are burst-like, even if models
are available.

v. The energy distribution can be found from∫
dE

df
df =

∫ ∞

−∞
D2ḣ2(t)dt =

∫ ∞

−∞
D2f 2h̃2(f)df.

We find
dE

df
= A2f

2π

2Q
exp

(
−π

2

Q
(f − f0)

2

)
.

vi. Assuming the number of objects per unit comoving volume with redshift
between z and z + dz and with f0 between f0 and f0 + df0 is N(z)df0dz,
the background energy density is

ρcΩGW(f) =

∫ ∞

0

∫ ∞

0

N(z)(1+z)2A2f
3π

2Q
exp

(
−π

2

Q
(f(1 + z)− f0)

2

)
fα
0 df0dz.

vii. The common redshift assumption allows us to replace the integral over z
by evaluation of the integrand at z0 as before. We then have

ρcΩGW(f) = N0(1+z0)
2A2 π

2Q
f 3

∫ ∞

0

exp

(
−π

2

Q
(f(1 + z0)− f0)

2

)
fα
0 df0dz.

The integral over f0 takes the form∫ ∞

0

xα exp
[
−(x− λf)2

]
dx

where λ = π(1 + z0)/
√
Q. This integral can be written down as a combi-

nation of hypergeometric functions∫ ∞

0

xα exp
[
−(x− λf)2

]
dx =

1

2
e−λ2f2

[
αλfΓ

(α
2

)
1F1

(
α

2
+ 1;

3

2
;λ2f 2

)
+Γ

(
α + 1

2

)
1F1

(
α

2
+ 1;

1

2
;λ2f 2

)]
.

The exact background computed from this expression is shown in Figure 4,
but we can also find analytic approximations for the low and high frequency
behaviour. If f ≪ 1, then the integral is approximately∫ ∞

0

xα exp
[
−x2

]
dx =

1

2
Γ

(
α + 1

2

)
with corrections of order λf . Hence, the dominant behaviour is a constant
and ΩGW(f) ∼ f 3 due to the factor out the front of the expression.
For f ≫ 1 we can make a change of variable in the integral∫ ∞

0

xα exp
[
−(x− λf)2

]
dx =

∫ ∞

−λf

(u+ λf)α exp
[
−u2

]
du

≈ λαfα

∫ ∞

−∞

(
1 +

u

λf

)α

exp
[
−u2

]
du

=
√
πλαfα

(
1 +O

(
1

f

))
.

So we deduce ΩGW ∼ f 3+α.
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Figure 4: Example backgrounds for the burst population model. We show ΩGW(f) as a
function of frequency for λ = 1 and three choices of α: α = −0.75 (purple), α = −0.5
(green) and α = −025 (red).



viii. (OPTIONAL) No results here again, but things to explore would be how
the introduction of a redshift distribution modifies things, what happens
if the distribution of f0 is changed, e.g., by introducing a cut-off in the
frequency range, what happens if we add a distribution for Q etc.



Solutions to additional questions on Frequentist statis-

tics

10. This can be proven by induction. We write

In =

∫ ∞

−∞

(
1 +

x2

n

)−n+1
2

dx.

Proving the t-distribution is properly normalised is equivalent to proving that

In =

√
nπΓ

(
n
2

)
Γ
(
n+1
2

) .

Setting n = n+ 2 in the above we find√
(n+ 2)πΓ

(
n
2
+ 1
)

Γ
(
n+1
2

+ 1
) =

√
n+ 2

n

n

n+ 1

√
nπΓ

(
n
2

)
Γ
(
n+1
2

)
which follows from the identity Γ(n + 1) = nΓ(n). Therefore, if we can show that
I1 =

√
πΓ(1/2) = π, I1 =

√
2π/Γ(3/2) =

√
2π/(

√
π/2) = 2

√
2 and

In+2 =

√
n+ 2

n

n

n+ 1
In

the result follows by induction. Firstly we note

I1 =

∫ ∞

−∞

(
1 + x2

)−1
dx =

[
tan−1(x)

]∞
−∞ =

π

2
+
π

2
= π

and

I2 =

∫ ∞

−∞

(
1 +

x2

2

)− 3
2

dx =

∫ ∞

−∞

√
2sech2udu =

√
2 [tanh(u)]∞−∞ = 2

√
2.

where we used the substitution x =
√
2 sinhu. Finally, we prove the recurrence

relation

In =

∫ ∞

−∞

(
1 +

x2

n

)−n+1
2

dx =

∫ ∞

−∞

1(
1 + x2

n

)n+1
2

+1
dx+

∫ ∞

−∞

x2

n
(
1 + x2

n

)n+1
2

+1
dx.

We can use a substitution x2/n = u2/(n + 2) in the first integral to put it in
the form of In+2. For the second term we can integrate by parts, writing u = x,
dv/dx = x/(n(1 + x2/n)(n+3)/2. We obtain

In =
√
nn+ 2In+2 +

1

n+ 1

∫ ∞

−∞

(
1 +

x2

n

)−n+1
2

dx =
√
nn+ 2In+2 +

1

n+ 1
In

⇒ In =
n+ 1

n

√
n

n+ 2
In+2 (2)

as required.



11. The MGF for the exponential distribution can be found via

MX(t) = E
[
etX
]
=

∫ ∞

0

etxλe−λx =
λ

λ− t
.

Similarly, for the Gamma(n, λ) distribution we have

MX(t) =
1

Γ(n)

∫ ∞

0

etxλnxn−1e−λx dx

=

(
λ

λ− t

)n ∫ ∞

0

1

Γ(n)
(λ− t)nxn−1e−(λ−t)x dx

=

(
λ

λ− t

)n

.

The MGF for a sum of n IID random variables, each of which has MGF MX(t), is
MX(t)

n. Hence we deduce that the sum of n IID E(λ) random variables is a Γ(n, λ)
distribution, as required.

12. The results in this question can also be obtained using results from the theory of
stick breaking. We have n birthdays distributed randomly over the year, which we
can represent as a circle with unit circumference. The first birthday is arbitrary,
but once this is specified it sets a zero point on the circle, which we can think of as
representing the two ends of the stick that have been identified with one another.
The remaining (n−1) birthdays are distributed randomly around the circle (or along
the stick) and therefore the full set of n birthdays represents a random partition of
the stick into n pieces. To answer part (a) we need the distribution of the maximum
length of a piece, while to answer part (b) we need the distribution of the minimum
length of a piece. The corresponding results may also be found in the Appendix.

(a) To answer this question we need the probability that the pieces of a unit-length
stick broken into n parts are all less than x = 1/26 (which corresponds to 2
weeks). This is shown in the Appendix to be given by

n+1∑
j=0

(−1)j
(
n
j

)
(1− jx)n−1

+ . (3)

This can be evaluated numerically and is plotted in Figure 5. We conclude
that the must be 138 members in the institute before Andrew gets his cake at
least every two weeks!

(b) To answer this question we need the probability that the minimum length of
pieces of a stick broken into n parts exceeds x, which is shown in the Appendix
to be (1−nx)n−1

+ . This can be evaluated numerically and is shown in Figure 6.
We see that even with as few as n = 5 members in the institute there is a
greater than 50% chance that the minimum separation between birthdays is
less than 2 weeks. So, Alice should employ at most 4 people if she wants to
protect her members’ health.

13. Let nm+1 be the number of items which survive to time mh (so that n =
∑m+1

r=1 nr),
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Figure 5: Probability that the longest spacing between birthdays is less than 2 weeks as
a function of the number of members of the institute (blue curve). The horizontal orange
line indicates a probability of 0.5. The blue curve reaches p = 0.5 between n = 137 and
n = 138.
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Figure 6: Probability that the shortest spacing between birthdays is greater than 2 weeks
as a function of the number of members of the institute (blue curve). The horizontal
orange line indicates a probability of 0.5. The blue curve reaches p = 0.5 between n = 4
and n = 5.



and let γ = e−hλ. The probability that an item fails in the interval ((r− 1)h, rh) is

pr = Pr((r − 1)h < T < rh)

= FT (rh|λ)− FT ((r − 1)h|λ)
= (1− e−rhλ)− (1− e−(r−1)hλ)

= γr−1 − γr

= γr−1(1− γ) (r = 1, . . . ,m);

the probability of surviving to time mh is

pm+1 = Pr(T > mh) = e−mhλ = γm.

The joint distribution of (N1, N2, . . . , Nm+1) is Mult(n, p1, . . . , pm+1), so the
likelihood function is

L(λ) = n!
m+1∏
r=1

pnr
r

nr!
=

n!
∏m

r=1{γr−1(1− γ)}nr × γmnm+1∏m+1
r=1 nr!

=

{
n!∏m+1

r=1 nr!

}
· (γs1(1− γ)s2)

where s1 =
∑m+1

r=1 (r − 1)nr, s2 =
∑m

r=1 nr = n − nm+1. Therefore, by the Factor-
ization Theorem, (S1, S2) is sufficient for λ. [Note: (S1, Nm+1) is also sufficient for
λ.]

14. The likelihood for θ =(α, β) is

L(α, β;x) =
n∏

i=1

(α + iβ) exp{−(α + iβ)xi}

= {
n∏

i=1

(α + iβ)} exp{−α
n∑

i=1

xi} exp{−β
n∑

i=1

ixi}.

Let s = (s1, s2) = (
∑n

i=1 xi,
∑n

i=1 ixi). Using the Factorization Theorem with

g(s, α, β) = {
n∏

i=1

(α + iβ)} exp{−αs1} exp(−βs2} and h(x) = 1

we see that S = (S1, S2) = (
∑n

i=1Xi,
∑n

i=1 iXi) is sufficient for (α, β).

15. The likelihood is

L(λ;x) =
n∏

i=1

f(xi | λ) = λne−λ
∑n

i=1 xi , l(λ;x) = lnL(λ) = nlnλ− λ
∑

xi, (4)

and
∂l

∂λ
=
n

λ
−

n∑
i=1

xi. (5)

MLE: Equating ∂l/∂λ to zero gives λ̂ = n/
∑
xi or 1/x, and it can be verified that

this corresponds to a maximum.



Mean: To compute E(1/X̄) we note that Y =
∑
Xi has a gamma distribution with

p.d.f. λnyn−1e−λy/Γ(n), y > 0, and 1/x is n/y, so

E

(
1

X̄

)
= E

( n
Y

)
=

∫ ∞

0

λn

Γ(n)
yn−1e−λyn

y
dy

=
nλ

(n− 1)

∫ ∞

0

λn−1

Γ(n− 1)
yn−2e−λydy =

nλ

(n− 1)

Variance: We first compute

E

[(
1

X̄

)2
]
=

n2λ2

(n− 1)(n− 2)
,

and then deduce

var

(
1

X̄

)
=

n2λ2

(n− 1)

[
1

(n− 2)
− 1

(n− 1)

]
=

n2λ2

(n− 1)2(n− 2)
→ 0 as n→ ∞.

Cramér-Rao bound: The second derivative of the log-likelihood is

∂2l

∂λ2
= − n

λ2
,

which is constant and therefore equal to its expectation value, which is minus the
Fisher matrix. Therefore Iλ = n/λ2.

Bias: The bias is

b(λ) =
nλ

(n− 1)
− λ =

λ

(n− 1)
,

so the MLE is biased but asymptotically unbiased.

Consistency: The bias ( 1
X̄
) → 0 and var( 1

X̄
) → 0 as n→ ∞ ⇒ 1

X̄
is consistent.

Asymptotic efficiency:
var( 1

X̄
)

λ2

n

→ 1 as n → ∞. Therefore 1
X̄

is asymptotically

efficient.

16. The expectation value of X1 is

E(X1) = 0× (1− p) + 1× p = p

so it is an unbiased estimator of p. The variance is

var(X1) = E(X2
1 )− p2 = p− p2 = p(1− p).

The combined likelihood is

L(p;x) = p
∑

xi(1− p)n−
∑

xi =

(
p

1− p

)∑
xi

(1− p)n

and from the factorisation theorem we recognize S =
∑
Xi as a sufficient statistic.



When X1 = 1 :

Pr

[
X1 = 1 |

n∑
i=1

Xi = t

]
=

Pr

[
X1 = 1;

n∑
i=1

Xi = t

]

Pr

[
n∑

i=1

Xi = t

] =

Pr

[
X1 = 1;

n∑
i=2

Xi = t− 1

]

Pr

[
n∑

i=1

Xi = t

]

=

θ ·
(
n− 1
t− 1

)
θt−1(1− θ)n−1−t+1(

n
t

)
θt(1− θ)n−t

=
t

n
.

When X1 = 0:

Pr(X1 = 0 |
∑

Xi = t) = 1− Pr(X1 = 1 |
∑

Xi = t) = 1− t

n
=
n− t

n

Note that the conditional distribution of X1 given
∑
Xi = t is independent of θ, as

it should be. Therefore

θ̂T = E

[
X1 |

n∑
i=1

Xi = t

]
= 0 · n− t

n
+ 1 · t

n
=
t

n

i.e.

θ̂T =

n∑
i=1

Xi

n
= X̄.

We deduce that the sample mean, X̄, is a better estimator. It’s variance is p(1−p)/n,
which is smaller than that of X1, as expected.

17. (a) The likelihood for the observed data is

p(y|X, β) =
(

1

σ
√
2π

)n

exp

[
−1

2
(y −Xβ)T (y −Xβ)

]
and so maximising the likelihood is equivalent to minmising the sum of squares

(y −Xβ)T (y −Xβ) .

Differentiating with respect to (each component of) β and setting the deriva-
tives to zero gives

XTXβ −XTy = 0 ⇒ β̂ = (XTX)−1XTy

as required.

(b) The above estimator is a linear combination of normally distributed random
variables (the yi’s) and hence is normally distributed. The mean is found via

E(β̂) = (XTX)−1XTE(y) = (XTX)−1XTXβ = β.



The covariance of a linear combination of random variables Ay is A cov(y)
AT and so we deduce

cov(β̂) = (XTX)−1XTσ2IX(XTX)−1 = σ2(XTX)−1.

We deduce
β̂ ∼ N

(
β, σ2(XTX)−1

)
as required.

(c) We write ỹi = yi − (Xβ)i and note

E(ỹiỹj) = cov(yi, yj) = σ2δij.

The quantity

yTy − β̂TXTy = (ỹ +Xβ)T (ỹ +Xβ)− (ỹ +Xβ)TX(XTX)−1XT (ỹ +Xβ)

= ỹT ỹ − ỹTX(XTX)−1XT ỹ

= yiyi − yixij(X
TX)−1

jk xlkyl (6)

where we introduced Einstein summation convention in the last line. We now
take the expectation value

E
(
yTy − β̂TXTy

)
= σ2

(
δii− xij(X

TX)−1
jk xik

)
= σ2Tr

(
In −X(XTX)−1XT

)
= σ2Tr

(
In − (XTX)−1XTX

)
= σ2Tr (In − Ik)

= σ2(n− k). (7)

Here we use Ik to denote the k× k identity matrix. The quoted result follows.

As mentioned in the question, the quantity (n− k)σ̂2 is independent of β̂ and
follows a χ2 distribution with (n − k) degrees of freedom. We won’t give a
detailed proof, but this is most easily seen by decomposing the observations y
into a model-parallel and model-orthogonal piece. In particular

yTy − β̂TXTy =
(
y −Xβ̂

)T (
y −Xβ̂

)
.

This is the sum of squares of the residual, i.e., the difference between the ob-
served data and the part of it that can be explained by the best-fit model. The

elements of the residual, e =
(
y −Xβ̂

)
, are linear combinations of Normally

distributed random variables and so also follow a Normal distribution. The
covariance between the residual and the model parameter estimator is

cov(e, β̂) = cov (y,y)X(XTX)−1−Xcov(β̂, β̂) = σ2X(XTX)−1−σ2X(XTX)−1 = 0.

While zero covariance does not imply independence in general, this is true for
normally distributed random variables. We deduce that e, and hence σ̂2, are
independent of β̂. The estimator σ̂2 is a sum of squares of zero mean normal
random variables and so will follow a chi-squared distribution. However, not
all n components of e can be independent, since we started with n random
variables and k of them are used to determine the components of β̂. A more
careful analysis decomposes the observations into a set of k components that
lie in the model space, which give β̂, and a set of n−k components orthogonal
to the model space, the sum of squares of which give eTe. So the latter is σ2

times a chi-squared distribution with n− k degrees of freedom.



(d) The estimator cT β̂ is normally distributed with mean

E(cT β̂) = cTβ

and variance
Σ2 = cT cov(β̂, β̂)c = σ2cT (XTX)−1c.

The normalised estimator

cT β̂ − cTβ

σ
√

cT (XTX)−1c
∼ N(0, 1)

is standard normal. We do not know σ, but

σ̂2 =
σ2

n− k
χ

where χ ∼ χ2
n−k. Therefore

cT β̂ − cTβ

σ̂
√

cT (XTX)−1c
=

Z√
χ/(n− k)

, where Z ∼ N(0, 1) and χ ∼ χ2
n−k

which is the definition of a t-distribution with (n− k) degrees of freedom.

A 100(1− α)% confidence interval for cTβ is then

cTβ − σ̂
√

cT (XTX)−1c tα
2
< cTβ < cTβ + σ̂

√
cT (XTX)−1c tα

2

where tα
2
is the upper α/2 point (i.e., the point corresponding to (1− α/2) in

the cdf) of the tn−k-distribution.

18. (a) According to the Neyman-Pearson lemma, the most powerful test of size α for
testing the simple null hypothesis H0 : θ = 1 against the simple alternative
hypothesis H1 : θ = θ1 (θ1 > 1) has critical regions of the form

{y :
f(y | θ1)

p(y | θ = 1)
> Kα} = {y :

∏
i p(xi | θ1)∏

i p(xi | θ = 1)
> Kα}

= {y :
θna1 e

−θ1
∑

i zixi

e−
∑

i zixi
> Kα}

= {y : θna1 e
(1−θ1)

∑
i zixi > Kα}

= {y : na log θ1 + (1− θ1)
∑
i

zixi > logKα}

= {y : (1− θ1)
∑
i

zixi > logKα − na log θ1}

= {y :
∑
i

zixi < Cα}

since (1− θ1) < 0.

Constant Cα can be found from the condition that

P (
∑
i

ziYi < Cα | H0) = α.

To find the distribution of
∑

i ziXi, we can either use the Central Limit theorem
to find the distribution approximately, or we can find it exactly. Since ziXi ∼



Γ(a, θ) independently,
∑

i ziXi ∼ Γ(an, θ) or equivalently θ
∑

i ziXi ∼ Γ(an, 1).
Therefore, since under H0 θ = 1,

α = P (
∑
i

ziXi < Cα | H0) = FΓ(an,1)(Cα),

which implies that Cα = F−1
Γ(an,1)(α).

Alternatively, using the approximation, we have that ziXi ∼ Γ(a, θ) implies
that E(ziXi) = ziEXi = a/θ and V ar(ziXi) = a/θ2, and hence∑

i

ziXi ∼ N(na/θ, na/θ2)

for large n. Thus,

α = P (
∑
i

ziXi < Cα | H0) = P ([
∑
i

ziXi − na]/
√
na < [Cα − na]/

√
na | H0)

≈ Φ([Cα − na]/
√
na) = 1− Φ([na− Cα]/

√
na)

which implies that Cα ≈ na− zα
√
na.

Thus, the exact UMP critical regions are

{(x1, . . . , xn) :
∑
i

zixi < F−1
Γ(an,1)(α)}

and the approximate ones are

{(x1, . . . , xn) :
∑
i

zixi < na− zα
√
na}.

(b) Since the critical regions are independent of θ1, the preceding test is also UMP
for testing H0 : θ = 1 against H1 : θ > 1.

(c) No, since the critical regions of the UMP for testing the simple hypotheses
H0 : θ = 1 against the alternative hypothesis H1 : θ1 for θ1 ̸= 1 depend on θ1.

For θ1 > 1, the best critical regions are of the form {
∑

i zixi < Cα}, and for
θ1 ∈ (0, 1) the best critical regions are of the form {

∑
i zixi > Cα}, that is,

their form is different for different θ1.

(d) For observed data with n = 311,
∑

i zixi = 571 and a = 2, the 5% exact best
critical regions are

{(x1, . . . , xn) :
∑
i

zixi < F−1
Γ(622,1)(0.05) = 581.5538}

and the approximate ones are

{(x1, . . . , xn) :
∑
i

zixi < na− z0.05
√
na = 580.9775},

that is, the null hypothesis is rejected at 5% significance level.

For α = 0.01, the best critical regions are

{(x1, . . . , xn) :
∑
i

zixi < F−1
Γ(622,1)(0.01) = 565.4556}



and the approximate ones are

{(x1, . . . , xn) :
∑
i

zixi < na− z0.01
√
na = 563.9811},

that is, the null hypothesis is not rejected at 1% significance level.

Here
∑

i zixi can be viewed as a test statistic, so the corresponding exact p-
value is

P (
∑
i

ziXi <
∑
i

zixi | H0) = FΓ(622,1)(
∑
i

zixi) = FΓ(622,1)(571) = 0.0183,

and the approximate p-value is

P (
∑
i

ziXi <
∑
i

zixi | H0) ≈ Φ([
∑
i

zixi − an]/
√
an) = 0.0204.

Therefore, according to the exact p-value, the null hypothesis is rejected for
α < 0.0183 and not rejected otherwise. The data provides some evidence
against the null hypothesis, but the evidence is not strong.

(e) The power of the test H0 : θ = 1 against the alternative hypothesis H1 : θ = 3
as a function of n, with a = 2, is

η(θ1) = P (
∑
i

ziXi < F−1
Γ(2n,1)(0.05) | H1 : θ = 3) = FΓ(2n,3)(F

−1
Γ(2n,1)(0.05))

since under H1,
∑

i ziXi ∼ Γ(an, 3).

The smallest n such that the power of the test is greater than 0.9, equals n = 4,
which can be found numerically, by plotting the power as a function of n. The
corresponding power is 0.908 (for n = 3, the power is 0.794).

(f) According to the Neyman-Pearson lemma, the most powerful test of size α for
testing the simple null hypothesis H0 : θ = θ0 against the simple alternative
hypothesis H1 : θ = θ1 (θ1 > θ0) has critical regions of the form

Rα(θ0) = {y :

∏
i f(xi | θ1)∏

i f(xi | θ = θ0)
> Kα}

= {y : (θ1/θ0)
nae(θ0−θ1)

∑
i zixi > Kα}

= {y : (θ0 − θ1)
∑
i

zixi > cα}

= {y :
∑
i

zixi < Cα}

since (θ0 − θ1) < 0. Using θ0
∑

i ziXi ∼ Γ(an, 1) under the null hypothesis, Cα

is given by

α = P (θ0
∑
i

ziXi < θ0Cα | H0) = FΓ(an,1)(θ0Cα)

that is, Cα = θ−1
0 F−1

Γ(an,1)(α). For the data given in (d) and α = 0.1, Cα =

θ−1
0 F−1

Γ(622,1)(0.1) = 590.26/θ0.

Therefore, Rα(θ0) = {y :
∑

i zixi < 590.26/θ0}.



By definition, a one-sided 90% confidence interval for θ using the critical regions
Rα(θ0) is given by

{θ0 : y ̸∈ Rα(θ0)} = {θ0 :
∑
i

zixi > 590.26/θ0} = {θ0 : 571 > 590.26/θ0}

= {θ0 : θ0 > 590.26/571 = 1.03373},

that is, the corresponding 90% confidence interval for θ is (1.0337,∞).

19. (a) Using the Neyman-Pearson Lemma, the most powerful test of the simple null
hypothesis H0 : λ = λ0 against the simple alternative hypothesis H1 : λ =
λ1 (λ1 > λ0) has critical region given by L(λ1)

L(λ0)
≥ A where A is a constant.

For a Poisson random sample the likelihood is L(λ) = constant·λ
∑

xi exp(−nλ),
so the critical region is given by

L(λ1)

L(λ0)
=

(
λ1
λ0

)∑
xi

exp{−n(λ1 − λ0)} ≥ A, or as λ1 > λ0,
∑

yi ≥ B,

where B is a constant.

As this is the same critical region for any λ1 > λ0, this is the critical region of a
uniformly most powerful (UMP) test of the simple null hypothesis H0 : λ = λ0
against the composite alternative hypothesis H1 : λ > λ0.

(b) The MGF ofXi ∼ Pois(λ) isMX(t) = E(etX) =
∑∞

x=0 e
tx λxe−λ

x!
= e−λ

∑∞
x=0

(etλ)x

x!
=

exp(λ(et−1)). Hence the MGF of
∑
Xi isM∑

Xi
(t) =

∏
MXi

(t) = exp(nλ(et−
1)) which is the MGF of a Poisson random variable with parameter nλ.

A test with nominal level of 5% when n = 10 and λ0 = 1 has critical region∑
xi ≥ 16 from tables of Poisson probabilities with µ = nλ0 = 10 (α =

P (
∑
Xi ≥ 16) = 1− P (

∑
Xi ≤ 15) = 1− 0.9513 = 0.0487).

An approximate critical value may be obtained using a normal approximation
to the distribution of

∑
Xi ∼ N(nλ, nλ). The critical region is given by∑

xi ≥ nλ0 + z0.05
√
nλ0 +

1

2
= 10 + 1.6449

√
10 +

1

2
= 15.7.

The addition of the /2 here is called a continuity correction. This is to account
for the fact that we are approximating a discrete valued random variable by a
continuous distribution.

(c) As λ = 2, nλ = 20, so power is P (
∑n

i=1Xi ≥ 16) = 1 −
∑15

k=0
(20)ke−20

k!
=

1− 0.1565 = 0.8435.

(d) We now require a test of H0 : λ = λ0 against the alternative H1 : λ ̸= λ0.
No uniformly most powerful test exists as for λ1 > λ0 the critical region is∑
Xi ≥ B but for λ1 < λ0 the critical region is

∑
Xi ≤ B∗, and critical

regions are not of same form for all λ under alternative hypothesis.

Using a normal approximation to the distribution of
∑
Xi when n = 10 and

λ0 = 1, a two-sided test (not UMP though) would have critical values
nλ0±z 0.05

2

√
nλ0± 1

2
= 10±1.96

√
10± 1

2
= 3.3 and 16.7. Note that the additional

term of 1/2 is included as a continuity correction. This is a standard approach
when approximating a discrete random variable using a Normal distribution,
which is continuous.



Appendix: Stick breaking

Here we provide proofs of the results that were used in questions 3(d) and 12, relating to
the lengths of sticks broken at random.
Firstly we prove that the probability that the minimum length of pieces of a stick, of
length L, broken at random into n+ 1 pieces exceeds x is

pn = p(min {Si : i = 1, . . . , n+ 1} > x) =
(
1− (n+ 1)

x

L

)n
+

Note that we can without loss of generality assume L = 1 by rescaling. The result for a
stick of length L is found by the replacement x → x/L in the result for a stick of length
1. We prove this result inductively. For n = 1, the stick pieces both exceed length if the
point of the break lies in the interval [x, 1 − x]. There are no points in this interval if
1 − x < x, i.e., 2x > 1. Otherwise this interval is a fraction 1 − 2x of the total range in
which the point could lie. We deduce that p1 = (1− 2x)+, so the result holds for n = 1.
Now suppose the result holds for some n = k and consider n = k + 1. The probability
that the first break point lies in the interval [u, u+ du] is

(k + 1)du(1− u)k

which is the number of ways that the first break point can be chosen from the set of
k + 1 break points, times the probability density for that point (which is uniform), times
the probability that the other k points all lie in the interval [u, 1]. All stick piece lengths
exceed x if and only if the first break point on the stick lies beyond x, and all the remaining
pieces have length that exceeds x. The latter probability is just the probability that a
stick of length (1− u) broken into k+1 pieces has no piece smaller than x, which follows
from the induction assumption and is equal to (1− (k + 1)x/(1− u))k+. We finally prove
the induction step by integrating over u

pk+1 = (k + 1)

∫ 1

x

(1− u)k
(
1− (k + 1)

x

(1− u)

)k

+

du

=

∫ 1−(k+1)x

x

(k + 1)(1− u− (k + 1)x)kdu = (1− (k + 2)x)k+1
+ (8)

and so the result for n = k + 1 follows.
Next we prove the result needed in question 3(d), namely that all of the interior intervals
exceed x. This is related to the previous result, but is slightly different since we do not
care about the first and last intervals, as these do not correspond to event separations, but
only to separations with respect to the arbitrary start and end times of the observation
interval. We derive the necessary result as follows. The probability that the first point is
in the interval [u, u+ du] and the last point is in the interval [v, v + dv] is

n(n− 1)dudv(v − u)n−2

which is the number of ways to specify the first and last points, times the probability
density for those points, times the probability that all other points lie in the interval
[u, v]. Given the first and last points lie at u and v, the probability that all internal
intervals exceed x is just the probability that all pieces of a stick of length (v−u), broken
randomly into n − 1 pieces, exceed x, which follows form the previous result. The final



result follows be integrating over u and v

pn =

∫ 1

0

∫ 1

u

n(n− 1)

(
1− (n− 1)

x

(v − u)

)n−2

+

(v − u)n−2dvdu

=

∫ 1

0

∫ 1

u+(n−1)x

n(n− 1) (v − u− (n− 1)x)n−2 dvdu

=

∫ 1−(n−1)x

0

n (1− u− (n− 1)x)n−1 du

= (1− (n− 1)x)n+ . (9)

This is the result required for Q3(d), setting x = 1 and L = t, or equivalently x = 1/t in
the above.
This same result is all that is required to answer Q12(b), but for Q12(a) we need the
distribution of the maximum piece length. We first prove the result that the probability
that the first r pieces of a stick broken into n+ 1 parts all exceed length x is

(1− rx)n+ ,

which can also be used to prove the result above, as described in the solution to Q3(d).
We again prove this by induction on n. Firstly we show that it is true for n = 1. In that
case the stick has 2 parts so we can have r = 1 or r = 2 (the result for r = 0, which has
probability 1, is trivial). For r = 1, the probability is just the probability that the break
point is in the interval [x, 1], which is (1−x). For r = 2, the probability is the probability
that the break point is in the interval [x, 1−x], which is (1− 2x)+, so the result for n = 1
follows. Now we suppose this holds for n = k and we consider n = k+1. The probability
that the first break point is in the interval [u, u+ du] is

(k + 1)du(1− u)k

as above. The first r intervals will all be greater than x if this first break point is in
the range [x, 1], and the pieces defined by the next r − 1 points are all greater than
x. The latter is the probability that a stick of length (1 − u) broken into k pieces has
the first r − 1 pieces all longer than x, which is give by the induction assumption as
(1− (r − 1)x/(1− u))k+. We obtain the final result by integrating over u

pk+1,r =

∫ 1

x

(k + 1)(1− u)k
(
1− (r − 1)

x

(1− u)

)k

+

du

=

∫ 1−(r−1)x

x

(k + 1)(1− u− (r − 1)x)kdu = (1− rx)k+1
+ (10)

and so the result follows for n = k + 1.
This result that we want to compute to answer Q12(a) is the probability that the maximum
piece length is less than x. The statement that the r’th stick piece is shorter than x is the
complement of the statement that the r’th stick piece is longer than x. Denoting by Xr

the event that the r’th stick piece is longer than x, the probability we want to compute is

P
(
X̄1 ∩ X̄2 ∩ X̄3 ∩ . . . ∩ X̄n ∩ ¯Xn+1

)
where an overbar denotes the complement. If we consider two events then it is easy to
see (from a Venn diagram or otherwise) that

P
(
Ā ∩ B̄

)
= 1− P (A)− P (B) + P (A ∩B) .



For three events we have

P
(
Ā ∩ B̄ ∩ C̄

)
= 1−P (A)−P (B)−P (C)+P (A ∩B)+P (A ∩ C)+P (B ∩ C)−P (A ∩B ∩ C)

and so on. Therefore the probability we require is

P
(
X̄1 ∩ . . . ∩ ¯Xn+1

)
= 1− P(X1)− · · · − P(Xn+1) + P(X1 ∩X2) + · · ·P(Xn ∩Xn+1)− · · ·

· · ·+ (−1)n+1P(X1 ∩ . . . ∩Xn+1). (11)

Since the breaks are distributed randomly, the probabilities do no depend on the labels
of the intervals and so in each group of terms the probabilities are equal and are given by
the previous result. We conclude that

P
(
X̄1 ∩ . . . ∩ ¯Xn+1

)
=

n+1∑
j=0

(−1)j
(
n+ 1
j

)
(1− jx)n+ . (12)

The result required for Q12(a) requires the replacement n → n − 1 since the periodic
boundary condition means that the stick is broken into n pieces, with n− 1 break points.


