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1 Numerically solving the Advection Equation

We have discussed various algorithms to solve hyperbolic partial differential equations.
Let’s get our hands dirty and actually code one example to completion.
Your goal is to program a numerical PDE solver for the simplest of hyperbolic equations,
the 1-D advection equation,

∂u

∂t
(x, t) +

∂u

∂x
(x, t) = 0, x ∈ [0, 1], t ≥ 0. (1)

As indicated, we will use the interval x ∈ [0, 1], and to keep things simple, we will use
periodic boundary conditions.

We aim to solve Eq. (1) with several different numerical methods: (1) finite-differences,
and (2) pseudo-spectral methods and, optionally (3) discontinuous Galerkin.

If you have never coded before, this is a challenging assignment. In that case, even “just”
getting the finite-differences code to work will be an impressive accomplishment. On
the other hand, if you have a lot of numerical experience, you might find the early tasks
quite easy, and arrive quickly at the more advanced methods. Work at your own pace.
We recommend you work in groups, however, it is educational if everybody in a group
tries to get her/his own code working.

We will use the initial guess
u(x, 0) = e−2 cos(2πx). (2)

This function is periodic, and has more structure than a simple sine-wave1

You can use any programming language of your choice. We recommend Python, as it
is convenient to use, provides the fft routines we use below, and is fast enough for our
1-dimensional problems.

1In fact, a sine-wave sin(2πx) is one of the basis-functions of the pseudo-spectral methods developed in
Sec. 1.4 below. Therefore the seemingly obvious initial guess of u(x, 0) = sin(2πx) would be represented
exactly by the pseudo-spectral method. The exponential in Eq. (2) levels the playing field, somewhat.



1.1 Finite Differences

Use a uniform grid with N grid-points

xi =
i

N
, i = 0, . . . , N − 1, (3)

i.e. with grid-spacing h = (xmax − xmin)/N = 1/N . The solution is represented by the
values at the grid-points:

u(x, t) ≈ u(xi, t), i = 0, . . . , N − 1. (4)

At fixed time, this will be represented by an array of doubles (in Python, a numpy array).
Discretizing the spatial derivative with central differences, we get

∂u

∂x
(xi, t) =

u(xi+1, t)− u(xi−1, t)

2h
+O(h2). (5)

Ignoring the higher-order corrections O(h2), this is a formula to compute ∂u/∂x. For the
boundary points (i = 0 and i = N − 1), one has to wrap around and use points from the
opposite end of the interval in Eq. (5). This way, you obtain a set of ordinary differential
equations for the values of the solutions at the grid-points:

du(xi, t)

dt
= F [u(xi, t)], (6)

where the right-hand-side F [u(xi, t)] couples the different spatial grid-points with terms
like Eq. (5).

Task FD-1: Write a function that computes the right-hand-side of Eq. (6), i.e. it
takes an array of doubles of length N (representing the grid-point values u(xi) at
time t, and returns an array of length N representing F at the grid-points. This
function will internally index the array u according to Eq. (5). It will also inter-
nally need to accommodate the periodic boundary conditions. Test this function
by feeding it sin(2πx), and check that the result is (approximately) 2π cos(2πx).
Also apply this function to Eq. (2), plot, and ensure by visual inspection that the
result seems right.

Writing the array of variables u(xi) as u, Eq. (6) becomes a vector equation:

du

dt
= F[u]. (7)

This is now a set of ordinary differential equations for the variables u. With this view-
point, called Method of Lines (MOL) we can now employ any method to solve ordinary
differential equations. Let us now develop a few time-steppers so we have building blocks
when we get to the later methods.



1.2 Forward Euler

We begin with the simplest possible time-stepper, the Forward-Euler method. We dis-
cretize time,

t → tk ≡ k∆t, k = 0, 1, ... (8)

We also write the vector of variables at time tk as

uk ≡
(
u(xi, t

k)
)
i=0,...,N−1

. (9)

The Forward-Euler method is now

uk+1 = uk +∆tF[uk] (10)

Task FD-2: Write a function, called FE Step that performs one step of the Forward-
Euler method. I.e. this function takes an array u representing uk, a time-step ∆t
and a pointer to the function F[u] you coded in Task FD-1. It then returns an
array u that represents the variables one time-step later, i.e. uk+1.

All time-steppers we encounter today are explicit, i.e. the spatial derivatives are only
computed on already known data. Explicit methods are only stable if the time-step is
sufficiently small, roughly,

∆t ≲ consth, (11)

where h is the spatial grid-spacing, and the constant is of order unity (its precise value
depends on the time-stepper and the spatial discretisation method).

Task FD-3: Write a function, called Evolve that calls the single-time-step function
as often as needed, to evolve up to a desired final time Tfinal. This function should
take a ’Courant Factor’ CF, and then automatically choose a step-size satisfying
∆t < CF∆xmin. (This will make convergence tests a lot more convenient). A
possible calling sequence for this function is given just below. Check Evolve with
CF = 1/2, and by evolving to t = 1/10, t = 1/5, etc. Observe whether the solution
looks as expected (i.e. translated by 1/10, 1/5, etc.)

Sooner or later, it is useful to standardize on function calling sequences that are general
enough for the entire exercise. We recommend you do this now, while working on FD-3.
Specifically, the instructor has found the following calling interface for Evolve useful,
which you are recommended to duplicate:

def Evolve(t, T_final, u, F, Tstepper, CF, info):

"""Evolve the evolution equations represented by right-hand-side ’F’

with time-stepper Tstepper until final time ’T_final’.

t - current time

T_final - final time

u - solution at current time ’t’

F - A function computing the right-hand-side of the

evolution equations. Calling sequence: F(t, u, info)

Tstepper - A function that performs one time-step.

Calling sequence: Tstepper(t, u, F, dt, info)



CF - courant-factor; ’Evolve’ will choose a timestep dt

that satisfies dt < CF*dxmin

info - a namedtuple with any additional information needed by

’F’ or ’Tstepper’. Specifically, ’info.dxmin’ must

return the minimal grid-spacing. ’info’ is passed

into ’TStepper’ and ’F’. These two functions can either

ignore ’info’, or retrieve any information from there

that they need.

returns

t_final, u_final"""

... Your python code goes here ...

return t_final, u_final

The extra variable info will become more useful later, when we have more additional
information that needs to be passed around2. It is convenient to use a namedtuple for
info. For example, the following would provide useful information about the finite-
difference grid, which in turn would simplify the function F FD:

FD_Info_t=collections.namedtuple(’FD_Info_t’, ’dxmin, x’)

x = np.linspace(0., 1., N, endpoint=False)

info=FD_Info_t(dxmin=1./N, x=x)

print("dxmin=", info.dxmin) # dxmin (required to compute dt from CF)

print("x =", info.x) # all grid-points (useful for plots)

Just plotting data and looking at it is of course not good enough to ensure the code is
correct. The primary means to test for correctness is via a convergence test. As the
resolution is increased (i.e. h → 0, and ∆t → 0), the solution should approach a limiting
solution, and it should approach this solution at the correct rate, given the choices of
discretization. The spatial discretization in Eq. (5) is second order accurate.

Task FD-4: Perform simulations up to T = 1 with Forward-Euler.
Compute the root-mean-square difference to the analytic solution,

err:=
[

1
N

∑N
i=0(u(xi, T )− uAnalytic(xi, T ))

2
]1/2

.

Plot the error vs. N and vs. ∆t. Confirm that the error decays as expected: ∝ N−2

and ∝ ∆t. Because the time-convergence of Forward Euler is so abysmally slow
you will have to go to very small time-steps, say Courant factors CF ∼ 2−1 . . . 2−8.

2Do NOT use global variables to pass information around; this is much too error-prone.



1.3 Better time-steppers

Clearly, Forward Euler is the limitation, so let’s switch to time-steppers that converge
more quickly. Runge-Kutta 2 uses two right-hand-side evaluations, and achieves a time-
step error of O(∆t2)

w1 = F [t,u] (12)

w2 = F [t+ 0.5∆t,uk + 0.5∆tw1] (13)

uk+1 = uk +∆tw2 (14)

Runge-Kutta 4 uses four right-hand-side evaluations, and achieves a time-step error of
O(∆t4)

w1 = F (t,uk) (15)

w2 = F (t+ 0.5∆t,uk + 0.5∆tw1) (16)

w3 = F (t+ 0.5∆t,uk + 0.5∆tw2) (17)

w4 = F (t+∆t,uk +∆tw3) (18)

uk+1 = uk +
∆t

6
(w1 + 2w2 + 2w3 +w4) (19)

Task FD-5: Perform simulations up to t = 1 with Runge-Kutta 2 and Runge-Kutta
4. Plot the error at t = 1 (compared to the analytical solution) vs. time-step for
different choices of N . Confirm that the spatial discretization error decays ∝ N−2.
Provide a convergence plot of error vs. spatial resolution.
You will find that for any time-step ∆t for which the methods are stable, the time-
discretization error is already smaller than the spatial discretization error. There-
fore, it is somewhat more difficult to verify that the time-stepping errors decay as
∝ ∆t2 and ∝ ∆t4, respectively.
You can postpone establishing timestep-convergence to the next section. (If you
are curious, to exhibit the time-discretization error for the current setup, one needs
to take differences between numerical solutions with the same spatial resolution
and different timesteps.)

Optional Task FD-6: Implement Eq. (5) with higher-order spatial stencils. For
instance, a 5-point stencil that represents ∂u/∂x with an error O(h4).



1.4 Pseudo-spectral collocation methods

The difficulty with finite-differences is the low order accurate spatial differencing stencil.
We could increase the order, but let’s go a different route, and let’s expand the solution
in basis-functions. Because of periodicity, we will use a Fourier series

u(x, t) ≈
Ñ−1∑
k=0

ãk(t) cos(2πkx) + b̃k(t) sin(2πkx) = Re
Ñ−1∑
k=0

c̃k(t)e
−2π i kx, (20)

where the complex coefficients c̃k = ãk + ib̃k.
As discussed in the lecture, for smooth, periodic functions a Fourier series converges
exponentially in the number of modes, Ñ . Therefore, the derivative

∂u

∂x
=

Ñ−1∑
k=0

−2πkãk sin(2πkx) + 2πkb̃k cos(2πkx) (21)

will also be exponentially accurate. From Eq. (21), we can read off the spectral coeffi-
cients of the Fourier series of the derivative ∂u/∂x:

ã′k = 2πkb̃k, b̃′k = −2 ikãk, or c̃′k = −2π i kc̃k. (22)

If we can use the expansion Eq. (20), then we know our solution everywhere with high
accuracy (i.e. we can interpolate). We can then also use Eq. (22) to compute derivatives
with high accuracy. If we can use this to evaluate F [u] in Eq. (7), we will have our spatial
discretization error vastly reduced.
It turns out that for a Fourier-series the associated real-space collocation points are
equally spaced:

xj =
j

N
, j = 0, . . . , N − 1. (23)

This is identical to the finite-difference example above (fundamentally, a periodic prob-
lem is translation invariant, and so equal-spacing must be the right choice).
The grid-points xj are also the corresponding grid-points for Gaussian quadrature, and
each grid-point carries the same weight. That means, we can compute the Fourier coef-
ficients as a sum:

ãk =
1

2

∫ 1

0

u(x) cos(2πkx)dx ≈ 1

2N

∑
j

u(xj) cos(2πkxj) (24)

b̃k =
1

2

∫ 1

0

u(x) sin(2πkx)dx ≈ 1

2N

∑
j

u(xj) sin(2πkxj) (25)

c̃k =
1

2

∫ 1

0

u(x)e2πikxdx ≈ 1

2N

∑
j

u(xj)e
2πikxj =

1

2N

∑
j

u(xj)e
2π i jk/N (26)

The factor 1/2 arises, because the average of sin2(x) over a full period is 1/2. Equa-
tion (26) is a discrete Fourier transform, and can be evaluated with built-in functions
in python’s numpy.fft module. Unfortunately, there are many different conventions for
Fourier transforms, and therefore:



Task PS-1: Read the Python documentation on fast Fourier transforms, and fig-
ure out how precisely you need to call a numpy.fft–routine to implement Eq. (26).
This may involve overall scaling, and it may involve complex conjugation to get
the sign-conventions of Eq. (26). Implement a function that takes u and returns
the spectral coefficients c̃k. Test by transforming sin(4πx)− 1/6 cos(8πx) to ensure
you obtain c̃2 = i and c̃4 = −1/6, with the other terms vanishing. Transform also
a constant function, to explore the conventions the FFT-routines use for the k = 0
coefficients (they often differ by a factor of 2).

Task PS-2: The evaluation of Eq. (20) at the grid-points u(xj) is the inverse trans-
formation (from spectral to physical space), c̃k → u(xj). Show that this can also be
written as a fast Fourier transform. Work out the conventions, and implement as a
function complementing the one of Task PS-1. Test by ensuring that PS-1 followed
by PS-2 returns the original data.

We’re almost done computing derivatives with pseudo-spectral methods. To finish:

Task PS-3: Implement a function that evaluates the right-hand-side of Eq. (7) as
follows:
(1) transform to spectral coefficients c̃k;
(2) compute the spectral coefficients of the first derivative by Eq. (22);
(3) transform back to real space values (via task PS-2).
Test by computing the right-hand-side for sin(2πx), checking that you obtain
−2π cos(2πx). (the minus sign arises because ∂u/∂t = −∂u/∂x).

Now we’ve got all pieces to apply method-of-lines using a pseudo-spectral expansion:

Task PS-4: Perform simulations using the pseudo-spectral right-hand-side from
Task PS-4. After initial tests, evolve up to Tfinal = 1.02 with Runge-Kutta 4 (do
not use Tfinal = 1!). Compute the difference of u(x, Tfinal) with the analytical
solution; plot its L2-norm vs. time-step for different choices of N . Confirm that
the time-stepping error decays ∝ ∆t4. Confirm that the spatial discretization error
decays exponentially. Provide convergence plots.

You will need quite small N to make spatial discretization errors large enough
to be noticable. You will need very small Courant factors to push the time-
discretization error small enough to compete with the spatial discretization errors.
Use N in the 10’s, use CF down to 2−8.

Optional Task PS-5: Why emphasizes Task PS-4 to avoid Tfinal = 1?



1.5 Optional: Discontinuous Galerkin

We did have only minimal time to discuss discontinuous Galerkin methods in class, so this
part is optional, and you may need to refer to Hesthaven & Warburton for details. If you
would like to try DG methods, this provides a good starting point. Enjoy!

Continuing with the interval [xmin, xmax] = [0, 1], let’s do a discontinuous Galerkin so-
lution on K elements, each with width h ≡ 1/K. In each element Dk we will employ
a polynomial expansion with the same polynomial expansion order N , for a number of
grid-points per element of Np = N + 1. The total number of grid-points, therefore, is
N = KNp = K (N + 1).

1.6 Lagrange Nodal Basis

In each element, we will use an underlying expansion in Lagrange interpolating polyno-
mials lj(r) based on Legendre-collocation points

ri, i = 0, . . . , N, (27)

with r0 = −1 and rN = 1. Given a set of collocation points rj, the Lagrange interpolating
polynomials are defined to be the unique N-th order polynomials which satisfy

lj(ri) = δij, i, j = 0, . . . , N, (28)

i.e. each lj(r) vanishes at all collocation points, except rj.
Furthermore, as derived in the lecture, we define the mass-matrix on the reference ele-
ment

Mref
ij ≡

∫ 1

−1

li(r)lj(r)dr, (29)

and the stiffness-matrix

Sref
ij ≡

∫ 1

−1

li(r)
dlj(r)

dr
dr. (30)

It turns out that Eqs. (27), (29) and (30) can be computed reasonably easily by exploiting
various relations between Legendre polynomials. Details can be found in Hesthaven &
Warburton, Chapters 2 and 3. For expediency, we provide a Python function to compute
these quantities, which can be called as

r, Minv ref, MinvS ref = ReferenceElement(N)

This function returns rj, the inverse Mref−1, and the matrix Mref−1Sref . It returns the
inverses of Mref , because those are easier to compute, and because those are the ones
actually needed below.



1.7 Actual implementation

Task DG-1: The k-th element Dk covers x ∈ [xk, xk+1]. Derive xk, assuming each
element has the same width. We need a linear mapping from the reference interval
r ∈ [−1, 1] to [xk, xk+1] (where k = 0, . . . , K−1 numbers the element). Write down
this mapping. Map the reference points rj to the collocation points of the element,
xk
j . Then construct a vector of length K(N + 1) containing all grid-points.

Task DG-2: The mass-matrix in element Dk is given by

Mk
ij =

∫ xk+1

xk

lki (x)l
k
j (x)dx, (31)

where the Lagrange interpolating polynomials on the k-th domain lkj (x) are ob-
tained from the reference lj(r) by the linear transformation x → r you worked out
in task DG-1. Express Mk in terms of Mref . Similarly, express the stiffness matrix
on the k-th element Sk in terms of Sref .

Now we are in the position to implement the final evolutionary equation for discontinu-
ous Galerkin, as very briefly sketched in the lecture:

duk
h

dt
=−Mk−1Skfkh

+
(
Mk−1

)
iN

(
fk
h (x

k+1)− f ∗(xk+1)
)
−

(
Mk−1

)
i0

(
fk
h (x

k)− f ∗(xk)
)

(32)

with flux on the common boundary at xk given by

f ∗(xk) = a{{u}}+ |a|1− α

2
[[u]], (33)

{{u}} =
uk
h(x

k) + uk+1
h (xk)

2
, (34)

[[u]] = uk
h(x

k)− uk+1
h (xk), (35)

(36)

where furthermore the advection speed a = 1. The parameter α modifies properties of
the flux f ∗, just set α = 1/2.

Task DG-3: in task DG-1, you worked out the vector of all grid-points. This com-
bines all “local” vectors uk

h, k = 0, . . . , K−1, which appear in Eq. (32). Implement
Eq. (32) operating on the vector of all grid-points, (uk(xk

j , t), k = 0, . . . , K − 1, j =
0, . . . N − 1). The first line of Eq. (32) operates on each element separately. The
second line couples neighboring elements. To implement periodic boundary con-
ditions, you will have to connect the left side of the first element with the right
side of the last element.
For guidance: Using the initial profile Eq. (2), K = 4, and for N = 1, 2, 3, 6,
respectively, Harald obtains the following plots.



Task DG-4: Use the function from Task DG-3 as right-hand-side in Runge-Kutta 4,
and thus solve the advection equation with discontinuous Galerkin. Specifically,
evolve for one light-crossing time (Tfinal = 1) and compute the difference to the
analytic solution. For fixed N , plot the L2-norm of this difference vs the num-
ber K of elements. Repeat for different order N , say up to N = 10, and check
whether you achieve the expected convergence rate err ∝ K−N−1. Because the
convergence order is so high, you will need quite small time-steps to make the
Runge-Kutta4 time-discretization error small enough so that you can observe the
spatial discretization error. Therefore, experiment with different choices for the
Courant factor.
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