IMPRS GW Astronomy — Computational Physics 2025

BSSN evolution equations
Takami Kuroda

Notations used in this lecture note.
* a,b,c.... - spacetime indices
* 4,j,k.... - spatial indices
« WR,, - Ricci tensor
* gu - Spacetime metric
o WR=M®R,¢% - Ricci scalar
* 7;; - spatial metric
« ®R;; - Ricci tensor associated with ;;
o @R =GR~V - Ricci scalar
* D, - spatial covariant derivative
* 0, - partial derivative
* A = 9'9; - Laplacian
* V, - spacetime covariant derivative
* 3, - hypersurface at t=const.
* n” - future pointing vector normal to ¥,
* K, - extrinsic curvature
* K=K!
* « - Lapse function
* (3% - shift vector
* Ty - Stress-energy tensor

* 0= -0+ A - dAlembertian



1 What makes the original 3+ 1 Einstein system numeri-
cally unstable?

1.1 Recap of the standard 3+1 formalism

The 3 + 1 formalism is expressed by two constraint equations

®R - KK+ K? = 16nT,nn’ (D
DK} — DiK = —8rTyn"y}, (2)
(3)
and two evolution equations
(8t — 55) Kz’j = —DZ'DjOé +« ((3)R2J + KKZJ — ZKZlKJl)
1

—8mal fyf*y;-’ ~ 3 (v** = n*n) 4)
((9t — Eﬂ) fyij == —QOéKij. (5)

1.2 Linearized evolution equations in vacuum

Below we discuss the behavior of gravitational wave propagation in vacuum spacetime
(T, = 0) in the linearized 3+1 formulation and find which term would cause the nu-
merical difficulty. For simplicity we assume o = 1 and 3° = 0. Neglecting higher order
terms such as K2, the evolution equations (4) and are rewritten as

O K; = YR (6)
Ovij = —2K;;. (7)

By combining these two, we obtain
0fv = =2 PRy, (8)

As the Ricci tensor can be approximated by

(S)Rij ~ [—A%j + Y (Oyyir + vk — @‘ﬂkz)} ; 9

DO | —

plugging ) R;; into Eq. (8) yields
9; Yij = A
—* (Ovin + Qv — Oij vk - (10)

The first line looks like a normal hyperbolic equation system, while we find an extra term
in the second line. As we will have a look, this second line is the source of headache.



1.3 Stability check of 3+1 formalism
In the linearized system, where ~;; = d;; + h;; with |h;;| < 1, Eq. can be further
rewritten as

O7hij = Ahij — (Ogjhis + Opihjr — Oijhar) - (11)

A general solution to this equation is

hij = Aéw -+ 8131 + a]Bz + az]C + hTT (12)

i

with A and C being a scalar, B; being a divergence free vector (i.e. 9'B; = 0), and h;;"
being a transverse trace-free (TT) tensor. After inserting the general solution into
both sides of Eq. (11)), the propagation equation reads as

OFhy; = Aby;+ 0:B; + 0;B; + 0,;C + h;l;T
= AAS; + 0 A+ AR (13)

Therefore, by comparing the first and second line, we finally get the following evolution
equations for each of newly introduced perturbed quantities

A = AA (14)

Wit = ART (15)

0;B; +0;B; = 0 (16)
C = A (17)

In the above equations, the first two hyperbolic equations behave quite well, i.e. nu-
merically stable. Regarding the third line, though I skip a detailed discussion about its
behavior, it is known that it behaves also well, but as long as the momentum constraint
is satisfied. The numerical instability of the original 3+1 formalism is coming from the
last equation.

Now let’s understand how badly it evolves. The Hamiltonian constraint in the linear
approximation is written as

where h = h;;. Then from Eq. (11)), we can derive AA = 0, which leads to the Hamilto-
nian constraint A = 0 in asymptotically flat spacetime. In any numerical simulations it is
inevitable to prevent a finite value of A, i.e., violation of the local Hamiltonian constraint.
However, this local violation can be dispersed away via the first equation OA = 0, i.e. a
wave equation, whose general solution in spherical symmetry is

ei(kriwt)

A x

(19)
T

Therefore the violation of local Hamiltonian constraint itself is not the major origin of

numerical instability. Instead C' appearing in the last equation is the origin of prob-

lems, as explained below. We now have a look how C' evolves. The general solution

becomes

C' = CoA + Cyt + Cs, (20)



where Cp, o are coefficients. At a far distant region (r — oc), A(x r~!) aproaches
zero and the leading term is the second one, which may secularly increase unless C is
exactly zero. Consequently, h;; (Eq. also grows linearly over time and the numerical
instability appears.

2 Reformulation of the 3+ 1 formalism in the linear regime

As we have discussed, even a small error that inevitably appears at initial or during the
numerical calculations linearly grows due to the term as highlighted in red below

Ay = Avig — v (Ovie + Ouvie — i), (21)

and eventually crushes the calculation.
To overcome the issue, we have to find a way to ensure the hyperbolicity at least in the
linearized system (v;; = 6;; + h;; with |h;;| < 1):

Othij = Ahy; — (Ojhir + Okihjr, — Oijhar) . (22)
To this end, we begin with introducing new auxiliary variables defined by

We evolve these two variables as independent values. These new auxiliary variables can
rewrite the above equation as follows.

Using Eq. (7)), the momentum constraint in the linear system is then expressed as

We can interpret this equation as the evolution equation for the new auxiliary variable
F;. Furthermore, we take a trace of equation (22)), which results in

O2h = 2Ah — 20, F;. (27)
Now we apply the Hamiltonian constraint (Eq. and obtain
Oth = 2(Ah — O;F;) = 2H = 0. (28)
This indicates that if we can numerically evolve h so that h satisfies
afh =0 = 0h=0 = h = const., (29)
we can simultaneously evolve F;, which obeys
OF; =0 (30)

from the evolution Eq. (26]). Since Eq. (26) is identical to the momentum constraint,
numerically satisfying the momentum constraint is also another key here. [Answer to the
question raised during the lecture.] F; is initially set to be tiny, or rather to be zero, because



F;(t = 0) = 0;h;; ~ 0. Then from Eq. , those tiny values can be preserved during
the evolution. Consequently the terms appearing in parenthesis of Eq. can also be
negligible. Thence the original propagation equations (or[25) of gravitational waves
can be reformulated as

O?hij = Ahy;. (31)

The reformulated equation is obviously free from the aforementioned origin of the issue
(terms in the parenthesis in Eq. (22))) and acquires the hyperbolicity, i.e., numerically
stable.

The essence of above reformulation process can be summarized as follows.

* During the numerical evolution, the Hamiltonian and momentum constraints have
to be numerically satisfied.

* On top of that we apply additional algebraic constraint h = const..

* Consequently the extra term, which was the origin of numerical issue, disappears
as clearly indicated by Eq.

3 BSSN formalism in the non-linear regime

What we discussed in the previous section can be straightforwardly applied to the non-
linear case. Now we proceed to the (original) BSSN formalization that is based on the
conformal decomposition formulation. We begin with introducing new fundamental vari-
ables defined by:

i = ey (32)
. 1
Aij = 674425 (KZJ — g’yz]K> (33)
1
o = - In~. (35)

After some algebras, the final form of the (original) BSSN equation reads as
- ~ - 2
(0 — B )3 = —20Ay + 290 8" — g%‘jakﬁk (36)
1
(0 — Bkﬁk)qﬁ = 3 (—aK + &ﬁk) , (37)

for the metric evolution corresponding to Eq. (5), and

3 _ 9 .
(0, — ") Ay = 2Ak(i3j)ﬁk — gAijakﬂk

1 . 1
6_4¢ |:O{ (RU — §€4¢:}/Z'j(5)R> — (DiD]’O{ — §64¢’:§/¢J‘Aa>:|

(3t - ﬁkﬁk)K = « (AZJA” + %K2) - AOé, (39)



for the extrinsic curvature evolution alternative to Eq. (4). Note that here we consider
the vacuum space for simplicity and thus there is no term originated from the energy-
momentum tensor (c.f. Eq.[4).

3.1 What makes the BSSN formalism numerically stable?

Although these new four evolution equations (36)-(39) are equivalent to the 3+1 formu-
lation (Egs.4jand |5) and sufficient to describe the evolution of all necessary geometrical
variables, it still does not guarantee stable numerical evolutions! Now let’s see what
makes the BSSN scheme numerically stable.

As we confirmed in the previous section, the origin of numerical instability is associated
with the non-linear term appearing in the Ricci tensor ¥ R;;. Therefore we have to again
carefully look at it. In the conformal decomposition formulation (i.e. v;; = €*%7;;), ® R;;
is now expressed as

®IR;; = R + Ryj, (40)

where
R{; = —2D;D;¢ —2%,;D"Dy$ +4D;¢D;¢ — 43;;D* ¢ Dy (41)
Ry = % (=" (0k0Ai; — 0,07 — 0:0%1)] + Ok 00,1 — T, Tk (42)

Again we highlight the non-linear term in red, which may cause the numerical instability.
Now we decompose the conformal three metric 5% into 6% + f*. With this we can rewrite
the Ricci tensor associated with 7;; as

. 1 . , . .
Ry = B [—A“/zj + 6M (0;01%ik + 0:0Vjk)

— ¥ (0;0%i — 0;00%r — 0i0 ;)]

+0, M 0;0,T; — T, T (43)
Here T = '?jkf;k is the conformal contracted Christoffel symbol. On the right hand
side of equation, the first and second lines are the linear and non-linear term in 7;;,

respectively. Analogous to the previous discussion in the linear regime (see Eq. [23]), we
here introduce a new auxiliary variable

With this we can further rewrite R;; as

~ 1
Ry = 3 [—A%ij + 0, F; + 0:F;
— (0,0, — 0;017ik — OO0 Fsk)
+0A0,0,T) — fgkf;ﬂ . (45)

We note that F; is numerically evolved as a independent variable. But how can we
derive the appropriate evolution equation for F;? Similar to Eq. (26), the answer is the



momentum constraint
M; = D,Ki-D;K
< 2
= DAj—3D;K =0, (46)

After multiplying the last line by « (the lapse function) and inserting the left hand side
of following equation, which is derived from Eq.

k2

20 A;; = —(0 — B 00) %y + 29053 3

Yi;068%, (47)
we finally obtain the evolution equation for F;:
. 1-~. ~ 2
(0, — B F;, = 20« {@-(f’”A,-k) — QAJZGZ-% + 60,0 A — g&K}
. - . R 2
—H;jk |:_28k0414ij + ﬁkﬁlamj + O (2%(,‘3j)6l - 57138k6k>:| (48)

3.1.1 Stability check of F;

We shortly check whether the evolution equation for the newly introduced auxiliary vari-
able F; can actually be evolved stably. Analogous to Eq. (12)), we decompose the confor-
mal spatial metric 7,; and conformal trace-free part of the extrinsic curvature A;; into

]~lij = A+ @BW +9;B,, + 0;C,, + h;gT (49)

Aij - Aké” + 82Bk] + aJBkz + a@]Ck + CL;FJ-T. (50)

Again A, and C,;, are scalars, B, ;, are divergence-free vectors, and h,; and a;; are the
TT tensors. With these, we can write F; as

F, = &hyj = A, + 0,AC, + AB, .. (51)

In the previous Sec. we have exhibited that the secular evolution of scalar mode C
can be the origin of numerical instability. Indeed at this moment, F; seems to be still
suffering from it, indicating F; may diverge along with the secular growth of C.
However, if we consider its time evolution

F, = 0;A, + O,AC, + AB,, (52)

the problematic term will be disappeared. Analogous to what we have seen at Eq. (13
together with evolution equations (36]) and (38), we obtain several relations between
the newly introduced perturbed terms above, some of which are

A, = 24, (53)
C, = —2C4. (54)
Furthermore we apply the momentum constraint

2
M:Ak—I—AC’k—gK:O. (55)



Note that the capital K (= 7" K;;) represents the trace of extrinsic curvature. Conse-
quently the evolution of F; in the linear system can be described by

F, = —20;Ay —20;AC), + AD,,
4 :
= 0K+ AB,, (56)
From this, we can infer that F; can be evolved without encountering numerical instability

as long as the momentum constraint is well satisfied. This is the most crucial part of the
(original) BSSN scheme.

3.2 Alternatives

Preserving the essence of original BSSN scheme, there are currently several alternative
variables proposed for more stable numerical evolution as well as for a simpler expression
of some variables, e.g., Ricci tensor/scalar.

e I = —9;4Y (Baumgarte & Shapiro, 1998) alternative to F;

* BSSN-puncture formulation: Y = e *¢ (Campanelli et al. 2006) or W = ¢~ 2¢
(Maronetti et al., 2008) alternative to ¢.
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