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1 Initial data for a spinning black hole

Let’s solve the initial data problem in one of the simplest, yet numerically non-trivial
settings. We consider puncture initial data for a single black hole with spin1.
Let us first collect all equations needed for the numerical solution: As laid out in class,
we assume conformal flatness, i.e. in Cartesian coordinates

γ̃ij = δij, (1)

vanishing of the trace of the extrinsic curvature (K = 0), and we take the conformal
trace-free extrinsic curvature from the Bowen-York solution with spin. That is, in Carte-
sian coordinates,

Ãij =
6

r3
n(iεj)klS

knl, (2)

where r = |xi| =
√
δijxixj, ni = xi/r. In Cartesian coordinates with conformal flatness,

upper and lower indices are equivalent, so index position in Eq. (2) is irrelevant. Also,
the εijk-symbol takes the values ±1.
In the puncture data approach, one writes the conformal factor as

ψ =
m

2r
+ 1 + u, (3)

where u is a finite and continuous function on R3 which we will be solving for. The pa-
rameter m=const is the ’bare mass’ of the puncture; it can be set to be m = 1 throughout
this problem. In terms of u, the Hamiltonian constraint simplifies to

∆fu = −1

8

r7ÃijÃij

(r +m/2 + ur)7
, x⃗ ∈ R3, (4)

with the asymptotic condition
u→ 0, as r → ∞. (5)

1This problem draws on results summarized in [2]. And of course, puncture data was first proposed by
Brandt & Brügmann [1] while they were at AEI.



Furthermore, the square of Ãij simplifies to

ÃijÃij =
18

r6
(
S2 − (Sini)2

)
=

18S2 sin2 θ

r6
, (6)

where in the second equality we assumed that the spin is parallel to the z-axis, Si =
(0, 0, S), and where θ is the usual polar angle, cos θ = z/r. Substituting this into Eq. (4),
we finally arrive at

∆fu = −9S2

4

r sin2 θ

(r +m/2 + ur)7
, x⃗ ∈ R3. (7)

Our goal now is to solve Eq. (7) subject to boundary condition (5). We will do so with
finite differences.

In Cartesian coordinates, the Laplacian is simply ∆f = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
, which is well-suited

to discretization by finite-differences. To get going, let us therefore disregard that our
problem is axisymmetric and instead finite-difference directly the 3-D Cartesian problem.
Take a 3-dimensional equally spaced grid with N3 grid-points covering a cube [−a, a]3
centered on the origin. That is

x⃗ijk = (−a+ ih,−a+ jh,−a+ kh), (8)

with h = 2a/(N − 1). The solution is represented by the vector u consisting of the values
of u at the grid-points, uijk = u(xijk).
We will need to derive a matrix-equation

Au = ρ, (9)

where A encodes the derivative operators and the Dirichlet-boundary conditions, and
ρ represents the right-hand-sides. While filling u and A, you will have to choose an
ordering of the 3-D grid-points inside the one-dimensional vector u, for instance row-
major, where the 3-D index (i,j,k) is represented by the 1-D index K = k+Nj+N2i. Let
us derive and test this matrix-representation first:

Task FD-1: Discretization
Use 2nd order finite-difference stencils to express ∆fu as a matrix-operation Au.
For the points on the boundary, assume Dirichlet conditions, i.e. set the corre-
sponding row of A to be all zeroes with 1 on the diagonal.
Code in your favourite programming language. Test & debug your code by apply-
ing it to quadratic functions of increasing complexity, for which the 2nd order FD
formulae are exact (i.e. start with u = 1, u = x, u = y, etc)..
For the concrete function u(x, y, z) = 2x+3y2 +4xz− z2 − 2, plot u and Au in the
xz-plane.
Hints: For this task, neither the scale a nor the resolution N does matter. You can
choose a = 10, and use a small value for N like 5 or 9.

The task FD-1 should have given you reasonable confidence that your matrix A is cor-
rectly implemented. Now we need to get a feeling for how much accuracy we might
expect:



FD-2: Toy Laplace-Problem, part I
Choose your own problem ∆fu = ρ where you know the solution u0 and the
right-hand-side ρ. Plot your choice of u0 and ρ in the xz-plane.
Initialize u and ρ with the solution u0(x) and ρ(x). Evaluate the residual

r ≡ Au− ρ. (10)

For N = 9 and N = 21, plot the residual r in the xz-plane. Furthermore, evaluate
the residual for different values of N and plot ||r|| vs N to demonstrate that your
code constructing A and evaluating Eq. (10) is convergent at the expected rate.

Hint: Be modest, pick a function u0 which has variations on scales comparable to the
box-size 2a, so that even with N ∼ 10 · · · 20 you already achieve errors of, say 10%.

So far, we have not yet solved anything, but merely verified that our discretizations are
correct. Now let us actually solve the toy-problem:

FD-3: Toy Laplace-Problem, part II
Given your toy-problem represented by u0 and ρ. Solve

∆fu = ρ, x ∈ [−a, a]3 (11)

with Dirichlet boundary conditions,

u(x) = u0(x), x ∈ ∂[−a, a]3. (12)

For N = 9 plot the finite-difference solution u in the xz-plane. Plot also u0 and the
error u− u0.
Demonstrate numerical convergence of your scheme by solving with increasingly
large N , and by plotting the error |u− u0|| vs. N .
We recommend you do a direct matrix-inverse of A. The computational cost will
increase rapidly withN , therefore stop increasingN when an individual numerical
solve takes more than 10 seconds (we expect this to happen for N ∼ 20).

Now we are almost ready to have our first attempt at the puncture initial data, Eq. (7).
The remaining difficulty is that Eq. (7) is nonlinear. We will again try to circumvent this
difficulty with the simplest possible scheme, fixed-point iteration.



Task FD-4: solve puncture data
Use a box with size a = 10, set m = 1, and choose a reasonably small spin S = 0.2.
Approximate the asymptotic boundary condition Eq. (5) by a Dirichlet condition
u = 0 on the boundary of the box.
Using the tools you developed in FD-1 through FD-3, solve Eq. (7) iteratively.
That is we strive to find ever better solutions u(k), k = 0, 1, 2, . . . as follows:
1) initialize with u(0) = 0.
2) given an approximate solution u(k), evaluate the right-hand-side of Eq. (7) at
your grid-points and call it ρ(k)

3) Now solve Au(k+1) = ρ(k) for the improved u(k)

4) stop when the solutions don’t change much anymore.

Plot the final solution u(k) in the xz plane.

You have just solved for a spinning BH!
Now let us work towards the maximum spin achievable by black holes in puncture initial
data.
A single spinning BH is axi-symmetric. In axi-symmetry, angular momentum cannot be
radiated, and therefore, the angular momentum of the black hole remains constant and
equal to the parameter S if the initial data set is evolved. In contrast, energy stored in
the initial data slice will either be absorbed by the black hole, or emitted to infinity in the
form of gravitational waves. As has been shown by actual evolutions, most of this excess
energy falls into the black hole, which increases in mass. If we assume that all energy is
absorbed by the black hole, then the final mass of the black hole will equal EADM. Then,
the dimensionless BH spin after the initial data has relaxed to a stationary state would
be χfinal ≈ ϵJ , where

ϵJ ≡ S/E2
ADM. (13)

Usually, EADM is computed at infinity from the asymptotic fall-off of the metric. Since
our current solutions only extend to a = 10, we can’t really extract this asymptotic fall-
off. Instead, we can resort to the accidental property of inversion symmetry of a single
spinning puncture black hole: The region near the puncture, r → 0, corresponds to
a second asymptotically flat universe. For a single spinning puncture black hole, the
two asympotically flat ends (r → ∞ and r → 0) are related to each other by inversion
symmetry at a sphere with radius Rinv = m/2. Specifically, the transformation r →
Rinv/r

2 is an identity operation, so that both asymptotically flat ends have the same
ADM-energy, which can be shown2 to be

EADM = 1 + u(0). (14)

Task FD-5: maximum relaxed spin
Evaluate u(0) from your solution to FD-4, and thus compute εJ . You should find a
value close to 0.2.
Solve for increasingly large S, and plot εJ vs. S. Are you able to see the turn-over
where εJ grows more slowly than S, approaching a limit smaller than unity for
large S? Compare to Figure 2 of [2].

2[2], page 5



FD-6: Open-ended continuations (optional)
The problems so far are impacted by two significant sources of error: the fairly
small value of N achievable in 3D with our simple direct inversion of the matrix
A. And second, the quite small value of a, which cannot represent the asymptotic
fall-off u → 0 as r → ∞. Here are a few suggestions if you are interested to
continue improving on this problem set:

• Estimate the relative importance of N and a on the error for εJ . Is there a
different choice for the two that leads to smaller errors?

• Exploit axisymmetry and code suitable 2-D stencils and regularity conditions
on the axis.

• If you don’t like to worry about regularity conditions, exploit the z → −z
symmetry and axisymmetry to solve only in one octant, x ∈ [0, a]3. You will
need zero-slope boundary conditions on the coordinate-axis planes, however,
you are gaining a factor 8 in reduction in grid-points which you can use to
increase either a or reduce h.

• Represent the solution as a series in spherical harmonics. Due to axisymme-
try, only m = 0 contributes, eliminating many terms. Moreover, spherical
harmonics are eigenfunctions under the angular piece of the Laplacian, so
that different l terms in ∆f decouple. This turns ∆fu = ρ into a sequence of
1-D radial problems, one for each l.
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