Solution: 341 Decomposition of Maxwell Equations
We consider a foliation of spacetime into spacelike hypersurfaces with unit normal
n® = afl(aat o Ba)’

where « is the lapse function and 5 the shift vector.

1. Lie derivative of F* along an®
The Lie derivative of a vector field E® along an® is:
LonE® = an’V,E* — E*Vy(an®).

Expanding the derivative:
Vi(an®) = n*Vya + aVyn®,

S0:
LonE® = an’V,E* — E'n®Vya — aE*Vyn®.

2. Maxwell’s equations in vacuum

V. F® =0,
Vi x F =0,
where the dual is defined by:

1
*Fab _ ieabchcd.

We define:
E® = F%n,, B%=—%F%,,.

We use the 3+1 decomposition:
Fab _ naEb o nbEa + EabCB
- [e3]
*Fab _ naBb _ ana _ ELLbcE
- CH

where €2¢ = ngedee is the induced spatial Levi-Civita tensor.

Note that:
E%, = B%, = 0.

3. Evolution equation for E*
Projecting V,F® = 0 orthogonal to ny, we obtain:

YV F® =0,

which gives: ‘ - ‘
LonE" = €9*D;(aBy) + aKE',

in vacuum, where D; is the spatial covariant derivative and K is the trace of the extrinsic curvature.



4. Constraint equation for E¢

Projecting along ng:
MV F® =V, ,E* — F®V,ny, =0 = DL,E*=0.

5. Evolution equation for B®

We now consider the dual Maxwell equation:
Vb * de =0.

Project orthogonal to ng using v¢4:
¢V x FP% = 0.

Substitute the decomposition:
*xFP =nbBd _pdBb _ bdep

Computing the projection and simplifying yields:

LonB' = —¢7*D;(aEy) + aKB'.

6. Constraint equation for B¢

Contract with ng:
ngVy x F* = VB — xF*Vyng = 0,

so in vacuum:
D;B"* = 0.

7. Summary of 3+1 Maxwell Equations in Vacuum

¢ Evolution of E': ) - X
LonE' = €9%Dj(aBy,) + aKE"

e Evolution of B': ) 3 )
LonB' = —¢*D;(aEy) + aK B’

e Constraint equations: ‘ ‘
DZ'E’L = 0, DlBl = 0

These are the Maxwell equations decomposed in 3+1 form on a foliation of spacelike hypersurfaces,
suitable for coupling to general relativity in the ADM formalism.
Solution: Hamziltonian Constraint

We are given an initial hypersurface (timeslice) with energy density p, momentum density j°, and extrinsic
curvature K;;. We are told:

e The trace of the extrinsic curvature K = v K;; is constant.

e The trace-free part of the extrinsic curvature vanishes: A;; = K;; — 37, K = 0.



1. Simplified Hamiltonian and Momentum Constraints

The full Hamiltonian and momentum constraints in the ADM formalism are:

R+ K? — K;; K" = 167p,
Dj(K" —4YK) = 8mj'.

Under the assumptions:

1 |
Ki; = g%‘jK, so KKV = §K27

since

T 1 1
KiK' =~y K? = ~ . 3K? = ~K?.
J g 17 9 3 3

Therefore, the Hamiltonian constraint becomes:

1 2
R+ K? — gK2 =16mp = R+ gK2 = 167p.

The momentum constraint becomes:
L ij 2. 9
D; (SPyJK—’yJK> = —gD K = 8mj".

If K is constant, then D°K = 0, so: ‘
ji=o.

2. Degrees of Freedom and Strategy for Solving Constraints

The spatial metric 7;; is a symmetric 3x3 tensor, with 6 independent components. General covariance allows

us to choose 3 coordinate conditions (gauge freedoms), reducing this to 3 physical degrees of freedom.

The constraints further reduce the allowable initial data:

e The Hamiltonian constraint imposes 1 condition.

e The momentum constraints impose 3 conditions (but here reduce to trivial constraints since j* = 0

and K = const).

In this special case, only the Hamiltonian constraint remains nontrivial.
Strategy: A common approach is the **conformal method**:

e Choose a conformal spatial metric 7;;.

e Assume the physical metric is ;; = ¥*7;;, where v is the conformal factor.

e Substitute into the Hamiltonian constraint to obtain an elliptic equation for .

e Solve for ¢ under desired boundary conditions (e.g., periodic).

3. Lower Bound on |K| with Periodic Boundary Conditions

We assume the spatial manifold is a 3-torus (periodic cube), so the boundary terms vanish under integration

by parts.
Integrate the Hamiltonian constraint over the spatial volume:

/(R+ 2K?) A dV = /167rpﬁdv.

Let V = [/7dV, the total volume. Then:



/RﬁdV +2K%V = 167r/pﬁdV. (7)
Using the assumption:
/R\ﬁdVSO, p >0,
we get:
2K*V < 1677/pﬁdV. (8)

Thus, in vacuum p = 0, we find:
2K*’V<0 = K?’<0 = K=0.

But the Hamiltonian constraint becomes:
R=0.

Yet this contradicts the assumption [ R,/ydV <0, unless R = 0 everywhere.
If R < 0 somewhere, then we must have K # 0, and so:

3
K% > T4 (167T/pﬁdV— /Rﬁdv) . (9)
So, under the condition [ R\/ydV <0, and assuming p = 0, the only possibility is:

3
2>7 —
K _2V< /Rﬁdv)>o.

Conclusion: For such a spacetime with non-zero integrated negative curvature and vanishing matter,
the slice must have nonzero mean curvature K. Therefore, the spacetime cannot be stationary (i.e., with
K = 0), because stationarity would require a time-symmetric slice with K = 0, which contradicts the
integrated constraint.

Solution: Harmonic Formulation of GR

We are given the harmonic formulation of the Einstein equations (in vacuum) with the modified Einstein
tensor:

1 1 1
Rab - iRgab - 5 (varb + Vbra) + §gabngVCFd = 07

and the harmonic gauge condition:
Ty = gapg®iT, = 0.

1. Freedom to Choose 0,g;, to Enforce Harmonic Gauge

We are given initial spatial metric components g;;(¢ = 0) and their time derivatives d;g;;(t = 0), but not the
time components 9;g:,. The harmonic condition can be used to determine them.

Recall that: )
V=g

r+= gbcl'\gc =

A (v=99")-

So,
1
Fa = gabrb = 7gab\/7_—gac(\/ 7ggbc).

This expression depends on first derivatives of g*°, and therefore on first derivatives of gqp.

Since the harmonic condition I', = 0 is first order in derivatives of the metric, and since g;; and 0,g;; are
already fixed by the initial data, the remaining freedom lies in choosing 9;g;, to satisfy I'y = 0 at ¢t = 0.

Conclusion: Yes, the 4 components 9;g;, can always be freely chosen (locally) to enforce the harmonic
condition I'; = 0 on the initial slice.



2. Do Choices of 0,g;, Affect the Constraints?

The Hamiltonian and momentum constraints arise from the 4 Einstein equations G = 87T°* when using
a 3+1 decomposition. These constraints depend on the metric g;;, its time derivative d:g;;, and the lapse
and shift (or equivalently go,,).

However, the constraints are already independent of the second time derivatives of ¢g;,. The
freedom to set Og:q to satisfy I'; = 0 simply fixes the coordinate (gauge) degrees of freedom and does not
directly affect the intrinsic or extrinsic geometry of the initial slice encoded in the constraints.

Conclusion: No, the choice of 0;g:, used to enforce the harmonic gauge does not interfere with whether
the Hamiltonian and momentum constraints are satisfied.

3. Evolution of I',

Let us define I'y, := gabngFZd. Under the harmonic Einstein equations, we can derive an evolution equation
for T',.
Key idea:

Under the harmonic formulation, the Einstein equations reduce to a system of quasilinear wave equations
for the metric components. The constraint I'; = 0 is analogous to a gauge condition and must be preserved
during evolution.

Let’s define the modified Einstein tensor as:

Eab = Rap — V(oI'y) + %gachFc-
Taking the divergence of the Einstein tensor and using the Bianchi identity:
ViGap =0 = V4 =-V"V( Iy + %VbVaF“ = —%DF;, + (curvature terms).
This leads to the evolution equation for I',:
Or, + R,'Ty = 0. (1)

Implication

This is a wave equation for I',. If we set:
,(t=0)=0, oI, (t=0)=0,
then by uniqueness of solutions to hyperbolic PDEs, the solution remains zero:
L.(t)=0 Vt,

i.e., the harmonic condition is preserved under evolution.

But this requires that the initial data satisfy both the harmonic gauge condition and the Hamiltonian and
momentum constraints — otherwise the wave equation above may have non-zero source terms and evolve
away from zero.

Conclusion: If the harmonic constraint I', = 0 and its time derivative vanish initially, and the Einstein
constraints are satisfied, then I'; = 0 is preserved during evolution under the harmonic Einstein equations.



