
Solution: 3+1 Decomposition of Maxwell Equations

We consider a foliation of spacetime into spacelike hypersurfaces with unit normal

na = α−1(∂at− βa),

where α is the lapse function and βa the shift vector.

1. Lie derivative of Ea along αna

The Lie derivative of a vector field Ea along αna is:

LαnE
a = αnb∇bE

a − Eb∇b(αn
a).

Expanding the derivative:
∇b(αn

a) = na∇bα+ α∇bn
a,

so:
LαnE

a = αnb∇bE
a − Ebna∇bα− αEb∇bn

a.

2. Maxwell’s equations in vacuum

∇aF
ab = 0,

∇b ⋆ F
bd = 0,

where the dual is defined by:

⋆F ab =
1

2
ϵabcdFcd.

We define:
Ea = F abnb, Ba = − ⋆ F abnb.

We use the 3+1 decomposition:

F ab = naEb − nbEa + ϵabcBc,

⋆F ab = naBb − nbBa − ϵabcEc,

where ϵabc = ndϵ
dabc is the induced spatial Levi-Civita tensor.

Note that:
Eana = Bana = 0.

3. Evolution equation for Ea

Projecting ∇aF
ab = 0 orthogonal to nb, we obtain:

γcb∇aF
ab = 0,

which gives:
LαnE

i = ϵijkDj(αBk) + αKEi,

in vacuum, where Dj is the spatial covariant derivative and K is the trace of the extrinsic curvature.
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4. Constraint equation for Ea

Projecting along nb:
nb∇aF

ab = ∇aE
a − F ab∇anb = 0 ⇒ DaE

a = 0.

5. Evolution equation for Ba

We now consider the dual Maxwell equation:

∇b ⋆ F
bd = 0.

Project orthogonal to nd using γcd:
γcd∇b ⋆ F

bd = 0.

Substitute the decomposition:
⋆F bd = nbBd − ndBb − ϵbdeEe.

Computing the projection and simplifying yields:

LαnB
i = −ϵijkDj(αEk) + αKBi.

6. Constraint equation for Ba

Contract with nd:
nd∇b ⋆ F

bd = ∇bB
b − ⋆F bd∇bnd = 0,

so in vacuum:
DiB

i = 0.

7. Summary of 3+1 Maxwell Equations in Vacuum

• Evolution of Ei:
LαnE

i = ϵijkDj(αBk) + αKEi

• Evolution of Bi:
LαnB

i = −ϵijkDj(αEk) + αKBi

• Constraint equations:
DiE

i = 0, DiB
i = 0

These are the Maxwell equations decomposed in 3+1 form on a foliation of spacelike hypersurfaces,
suitable for coupling to general relativity in the ADM formalism.

Solution: Hamiltonian Constraint

We are given an initial hypersurface (timeslice) with energy density ρ, momentum density ji, and extrinsic
curvature Kij . We are told:

• The trace of the extrinsic curvature K ≡ γijKij is constant.

• The trace-free part of the extrinsic curvature vanishes: Aij = Kij − 1
3γijK = 0.
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1. Simplified Hamiltonian and Momentum Constraints

The full Hamiltonian and momentum constraints in the ADM formalism are:

R+K2 −KijK
ij = 16πρ, (1)

Dj(K
ij − γijK) = 8πji. (2)

Under the assumptions:

Kij =
1

3
γijK, so KijK

ij =
1

3
K2,

since

KijK
ij =

1

9
γijγ

ijK2 =
1

9
· 3K2 =

1

3
K2.

Therefore, the Hamiltonian constraint becomes:

R+K2 − 1

3
K2 = 16πρ ⇒ R+

2

3
K2 = 16πρ. (3)

The momentum constraint becomes:

Dj

(
1

3
γijK − γijK

)
= −2

3
DiK = 8πji. (4)

If K is constant, then DiK = 0, so:
ji = 0. (5)

2. Degrees of Freedom and Strategy for Solving Constraints

The spatial metric γij is a symmetric 3x3 tensor, with 6 independent components. General covariance allows
us to choose 3 coordinate conditions (gauge freedoms), reducing this to 3 physical degrees of freedom.

The constraints further reduce the allowable initial data:

• The Hamiltonian constraint imposes 1 condition.

• The momentum constraints impose 3 conditions (but here reduce to trivial constraints since ji = 0
and K = const).

In this special case, only the Hamiltonian constraint remains nontrivial.
Strategy: A common approach is the **conformal method**:

• Choose a conformal spatial metric γ̃ij .

• Assume the physical metric is γij = ψ4γ̃ij , where ψ is the conformal factor.

• Substitute into the Hamiltonian constraint to obtain an elliptic equation for ψ.

• Solve for ψ under desired boundary conditions (e.g., periodic).

3. Lower Bound on |K| with Periodic Boundary Conditions

We assume the spatial manifold is a 3-torus (periodic cube), so the boundary terms vanish under integration
by parts.

Integrate the Hamiltonian constraint over the spatial volume:∫
(R+ 2

3K
2)
√
γ dV =

∫
16πρ

√
γ dV. (6)

Let V =
∫ √

γ dV , the total volume. Then:
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∫
R
√
γ dV + 2

3K
2V = 16π

∫
ρ
√
γ dV. (7)

Using the assumption: ∫
R
√
γ dV ≤ 0, ρ ≥ 0,

we get:

2
3K

2V ≤ 16π

∫
ρ
√
γ dV. (8)

Thus, in vacuum ρ = 0, we find:

2
3K

2V ≤ 0 ⇒ K2 ≤ 0 ⇒ K = 0.

But the Hamiltonian constraint becomes:
R = 0.

Yet this contradicts the assumption
∫
R
√
γ dV ≤ 0, unless R = 0 everywhere.

If R < 0 somewhere, then we must have K ̸= 0, and so:

K2 ≥ 3

2V

(
16π

∫
ρ
√
γ dV −

∫
R
√
γ dV

)
. (9)

So, under the condition
∫
R
√
γ dV ≤ 0, and assuming ρ = 0, the only possibility is:

K2 ≥ 3

2V

(
−
∫
R
√
γ dV

)
> 0.

Conclusion: For such a spacetime with non-zero integrated negative curvature and vanishing matter,
the slice must have nonzero mean curvature K. Therefore, the spacetime cannot be stationary (i.e., with
K = 0), because stationarity would require a time-symmetric slice with K = 0, which contradicts the
integrated constraint.

Solution: Harmonic Formulation of GR

We are given the harmonic formulation of the Einstein equations (in vacuum) with the modified Einstein
tensor:

Rab −
1

2
Rgab −

1

2
(∇aΓb +∇bΓa) +

1

2
gabg

cd∇cΓd = 0,

and the harmonic gauge condition:
Γa := gabg

cdΓb
cd = 0.

1. Freedom to Choose ∂tgta to Enforce Harmonic Gauge

We are given initial spatial metric components gij(t = 0) and their time derivatives ∂tgij(t = 0), but not the
time components ∂tgta. The harmonic condition can be used to determine them.

Recall that:

Γa = gbcΓa
bc = − 1√

−g
∂b(

√
−ggab).

So,

Γa = gabΓ
b = −gab

1√
−g

∂c(
√
−ggbc).

This expression depends on first derivatives of gab, and therefore on first derivatives of gab.
Since the harmonic condition Γa = 0 is first order in derivatives of the metric, and since gij and ∂tgij are

already fixed by the initial data, the remaining freedom lies in choosing ∂tgta to satisfy Γa = 0 at t = 0.
Conclusion: Yes, the 4 components ∂tgta can always be freely chosen (locally) to enforce the harmonic

condition Γa = 0 on the initial slice.
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2. Do Choices of ∂tgta Affect the Constraints?

The Hamiltonian and momentum constraints arise from the 4 Einstein equations G0µ = 8πT 0µ when using
a 3+1 decomposition. These constraints depend on the metric gij , its time derivative ∂tgij , and the lapse
and shift (or equivalently g0µ).

However, the constraints are already independent of the second time derivatives of gta. The
freedom to set ∂tgta to satisfy Γa = 0 simply fixes the coordinate (gauge) degrees of freedom and does not
directly affect the intrinsic or extrinsic geometry of the initial slice encoded in the constraints.

Conclusion: No, the choice of ∂tgta used to enforce the harmonic gauge does not interfere with whether
the Hamiltonian and momentum constraints are satisfied.

3. Evolution of Γa

Let us define Γa := gabg
cdΓb

cd. Under the harmonic Einstein equations, we can derive an evolution equation
for Γa.

Key idea:

Under the harmonic formulation, the Einstein equations reduce to a system of quasilinear wave equations
for the metric components. The constraint Γa = 0 is analogous to a gauge condition and must be preserved
during evolution.

Let’s define the modified Einstein tensor as:

Eab := Rab −∇(aΓb) +
1

2
gab∇cΓ

c.

Taking the divergence of the Einstein tensor and using the Bianchi identity:

∇aGab = 0 ⇒ ∇aEab = −∇a∇(aΓb) +
1

2
∇b∇aΓ

a = −1

2
□Γb + (curvature terms).

This leads to the evolution equation for Γa:

□Γa +Ra
bΓb = 0. (1)

Implication

This is a wave equation for Γa. If we set:

Γa(t = 0) = 0, ∂tΓa(t = 0) = 0,

then by uniqueness of solutions to hyperbolic PDEs, the solution remains zero:

Γa(t) = 0 ∀t,

i.e., the harmonic condition is preserved under evolution.
But this requires that the initial data satisfy both the harmonic gauge condition and the Hamiltonian and

momentum constraints — otherwise the wave equation above may have non-zero source terms and evolve
away from zero.

Conclusion: If the harmonic constraint Γa = 0 and its time derivative vanish initially, and the Einstein
constraints are satisfied, then Γa = 0 is preserved during evolution under the harmonic Einstein equations.
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