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2 Frequentist statistics

In the last section we discussed the notion of a random variable. When observing phenomena
in nature or performing experiments we would like to deduce the distribution of the random
variable, i.e., the probability distribution from which realisations of that random variable are
drawn. In parametric inference we assume that the distribution of the random variable
takes a particular form, i.e., it belongs to a known family of probability distributions. All
of the distributions that were described in the previous section are characterised by one or
more parameters and so inference about the form of the distribution reduces to inference
about the values of those parameters.

In frequentist statistics we assume that the parameters characterising the distribution are
fixed but unknown. Statements about the parameters, for example significance and confidence
are statements about multiple repetitions of the same observation, with the parameters fixed.
Key frequentist concepts are statistics, estimators and likelihood.

A statistic is a random variable or random vector T = t(X) which is a function of X
but does not depend on the parameters of the distribution, ✓. Its realised value is t = t(x).
In other words a statistic is a function of observed data only, not the unknown parameters.

An estimator is a statistic used to estimate the value of a parameter. Typically the ran-
dom vector would be a set of IID random variables, X1, . . . , Xn with pdf p(x| ✓). A function
b✓(X1, . . . , Xn) of X1, . . . , Xn used to infer the parameter values is called an estimator of ✓;
note that b✓ is a random variable with a sampling distribution in this latter context. The
value of the estimator at the observed data b✓(x1, . . . , xn) is called an estimate of ✓.

A statistic might also be used to provide an upper or lower limit for a confidence interval
on the value of a parameter, or to evaluate the validity of a hypothesis in hypothesis testing.

2.1 Likelihood

Likelihood is central to the theory of frequentist parametric inference.
If an event E has probability which is a specified function of parameters ~✓, then the

likelihood of E is P(E| ~✓), regarded as a function of ~✓.
The likelihood, denoted L(~✓;x), is functionally the same as the pdf of the data generating

process, the di↵erence is that the likelihood is regarded as a function of the parameters ~✓
while the pdf is regarded as a function of the observed data, x. It is often convenient to
work with the log likelihood

l(✓;x) = ln[L(✓;x)] = ln[p(x| ✓)] (✓ 2 ⇥)

Another useful quantity is the score
@l

@✓i

which is a vector that is also regarded as a function of ~✓ with the data fixed at the observed
values.

One interpretation of likelihood is that, given data x, the relative plausibility of or support
for di↵erent values ~✓1, ~✓2 of ~✓ is expressed by

L(~✓1;x)

L(~✓2;x)
or l(~✓1;x)� l(~✓2; |x).



14 Introduction to Statistics for GWs

As a result, inferences are unchanged if L(~✓|x) is multiplied by a positive constant (possibly
depending on x).

Typically we will be interested in cases where we observe more than one independent
realisation of the random variable. For discrete random variables the combined likelihood is
then the product of the likelihoods of each observed event.
Example: Poisson distribution

We observe a set {x1, . . . , xn}, of n IID observations from a Poisson distribution with
parameter �. Denoting nx̄ =

P
n

j=1
xj the likelihood is

L(✓;x) =
e�n��nx̄Q

j
xj!

(� > 0)

l(�;x) = log (L(�;x)] = �n�+ nx̄ ln�� ln(
Y

j

xj!)

For continuous random variables the joint likelihood can usually be written as

L(✓;x) =
nY

j=1

p(xj| ✓) ) l(✓;x) =
nX

j=1

l(xj| ✓).

or just p(x| ✓) for a vector x of random variables that are not IID. One case where this
does not necessarily hold is when measurements are imperfect. Typically we cannot observe
a quantity with infinite precision, but inevitably round to the nearest measurement unit. Ob-
servations of continuous random variables therefore typically involve grouping measurements
into bins.

Suppose random variables X1, . . . , Xn are IID with cumulative distribution function
P (x| ~✓) and we observe that there are n1, . . . , nk observations in each of the k intervals
(a0, a1], . . . , (ak�1, ak], where �1  a0 < a1 < . . . < ak  1 and P(a0 < Xj  ak) = 1.

The distribution of (N1, . . . Nk) is Multinomial with parameters (n, p1(~✓), . . . pk(~✓)) with

pr(~✓) = P(ar�1 < Xj  ar| ~✓) = P (ar| ~✓)� P (ar�1| ~✓),

and the likelihood is given by (3). For example, with common distribution N(µ, �2) we have

pr(µ, �
2) = �

✓
ar � µ

�

◆
� �

✓
ar�1 � µ

�

◆
.

If observations of the IID random variables are made with a resolution (or maximum
grouping error )of ±1

2
h, then we are e↵ectively in the above situation, and a recorded value

x represents a value in the range x ± 1

2
h. Assuming that the grouping error is small, the

likelihood is

nY

j=1

{P (xj +
1

2
h| ✓)� P (xj �

1

2
h| ✓)}. (45)

If p(x| ✓) does not vary too rapidly in each interval (xj � 1

2
h, xj +

1

2
h) then (45) can be

approximated by
nY

j=1

{hp(xj| ✓)},
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or, ignoring the constant hn,

L(✓;x) '
nY

j=1

p(xj| ✓).

which is the result we wrote down when there was no grouping error. However, this argument
can fail, as illustrated in the two examples below.

Examples where this approximation fails

• Single observation from N(µ, �2)

L(µ, �|x) = �

⇢
x+ 1

2
h� µ

�

�
� �

⇢
x� 1

2
h� µ

�

�
(46)

'
h exp

⇣
�1

2

(x�µ)
2

�2

⌘

p
2⇡�

(47)

if � > h. If µ = x and � ! 0, (46)! 1 but (47)! 1.

• Uniform distribution on [0, ✓], U(0, ✓)
If X1, . . . , Xn are IID with pdf given by

p(x| ✓) =
⇢

1

✓
(0 < x  ✓)

0 otherwise

then

p(x| ✓) =
⇢

1

✓n
(0 < x(n)  ✓)

0 otherwise

where x(i) denotes the i’th element in the ordered sequence of {xi}. The likelihood is

L(✓;x) '
⇢

0 (✓ < x(n))
1

✓n
(✓ � x(n))

(48)

Taking account of a grouping error of ±1

2
h, the probability assigned to (xj� 1

2
h, xj+

1

2
h)

is (
h

✓
(xj +

1

2
h < ✓)

✓�xj+
1
2h

✓
(xj � 1

2
h  ✓ < xj +

1

2
h)

and, if h  x(n) � x(n�1),

L(✓;x) /

8
><

>:

0 (✓ < x(n) � 1

2
h)

[(✓�x(n)+
1
2h)/h]

a

✓n
(x(n) � 1

2
h  ✓ < x(n) +

1

2
h)

1

✓n
(✓ > x(n) +

1

2
h)

(49)

where a is the number of observations equal to x(n). The continuous likelihood (Eq. (48))
and the likelihood accounting for grouping error (Eq. (49)) are shown in Figure 1.

Ignoring grouping, x(n) is the ML estimator and has variance of order n�2; with group-
ing the asymptotic variance is the usual O(n�1).

To summarise: if the precision of observing the data (h) is much smaller than the variabil-
ity of the data (e.g. than the standard deviation) then it is fine to use the approximation of
the likelihood by the density. However, if the precision h is comparable with the variability,
in order to estimate the unknown parameters reliably, one has to use the discrete version of
the likelihood.
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Figure 1: The continuous likelihood for the parameter, ✓, of the uniform distribution, as given
in Eq. (48), based on n = 5 observations with maximum observed value x(n) = 5.4 (solid
purple line). Also shown is the likelihood including grouping error, as given in Eq. (49),
assuming that results are rounded to one decimal place, h = 0.1, and there are a = 2
observations equal to 5.4 (dashed green line).
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2.2 Su�cient statistics

If a parametric form is assumed for the distribution of X, then there may exist a lower
dimensional function of the vector of observations x that contains the same information on
the value of ~✓ as vector x. Such a function is called a su�cient statistic.

2.3 Definition

Suppose a random vectorX has distribution function in a parametric family {P (y| ✓); ✓ 2 ⇥}
and realized value y. A statistic (recall this just means a function of observed data only)
is said to be su�cient for ~✓ if the distribution of X given S does not depend on ~✓, i.e.
pX|S(X|s, ~✓) does not depend on ~✓. Note that

(i) if S is su�cient for ~✓, so is any one-to-one function of S.

(ii) X is trivially su�cient.

Examples

• Bernoulli trials : X1, . . . , Xn take values 0 or 1 independently with probabilities 1�p
and p; n is fixed.

pX(x| p) =
nY

j=1

pxj(1� p)1�xj = p
P

xj(1� p)n�
P

xj (50)

If S = X1 + · · · +Xn, then S has the Binomial p.d.f.

pS(s| p) =
✓

n
s

◆
ps(1� p)n�s (s = 0, 1, . . . , n)

and the p.d.f. of X given S is

pX|s(x|s) =
P(X1 = x1, . . . , Xn = xn, X1 + · · · +Xn = s| ✓)

P(X1 + · · · +Xn = s)

=

(
pX(x| p)
pS(s| p) (

P
xj = s)

0 (
P

xj 6= s)

=

8
<

:

✓
n
s

◆�1

(
P

xj = s)

0 (
P

xj 6= s)

This does not depend on p, so S is su�cient for p.

For example, in the case when n = 3 the conditional p.d.f of x = (x1, x2, x3) given
s =

P
xi is as follows:
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Sample s =
P

xi

(y1, y2, y3) 0 1 2 3
(0 0 0) 1 0 0 0
(1 0 0) 0 1

3
0 0

(0 1 0) 0 1

3
0 0

(0 0 1) 0 1

3
0 0

(1 1 0) 0 0 1

3
0

(1 0 1) 0 0 1

3
0

(0 1 1) 0 0 1

3
0

(1 1 1) 0 0 0 1

• Pois(�) , S = X1 + · · · +Xn has distribution Pois(n�) and p.d.f.

pS(s|�) =
e�n�(n�)s

s!
,

so the distribution of X given s has p.d.f.

pX|s(X|s) =

8
<

:

pX(x|�)
pS(s|�) =

e
�n�

�

P
xj (

Q
j xj !)

�1

e�n�(n�)s

s!

= n
�s

s!Q
j xj !

(
P

xj = s)

0 (
P

xj 6= s)
,

which does not depend on � (it is a multinomial distribution), so S is su�cient for �.

Interpretation of su�ciency: If S is su�cient for ~✓, we can argue that x contains no
information on ~✓ beyond what is contained in the value s of S, i.e. all the information in X
about ~✓ is contained in s. This suggests that inferences about the value of ~✓ should be based
on the value of s. The rest of the information in y is still relevant to testing the correctness
of the assumed parametric family, e.g., by a residual analysis. Su�ciency leads to replacing
x by s and hence to a reduction in the data, so there is an advantage in using statistical
models and designs which lead to su�cient statistics of low dimensionality.

2.4 Recognizing su�cient statistics: Neyman Factorization The-
orem

Theorem 1. (Neyman Factorization Theorem). Let X = (X1, . . . , Xn) ⇠ p(x| ~✓). Then,
statistic s = s(X1, . . . , Xn) is su�cient for ✓ i↵ there exist functions h of x and g of (s, ~✓)
such that

p(x | ~✓) = L(~✓;x) = g(s(x), ~✓)h(x) 8~✓ 2 ⇥, x 2 X (51)

Proof. Proof (discrete case only).
If s is su�cient, then the conditional p.d.f. pX|S(x|s) does not depend on ~✓ and we can

take h(x) to be pX|S(x|s) and g(s; ✓) to be fS(s| ✓). Then

L(~✓;x) = pX(x| ~✓) = P(X = x| ~✓)
= P(X = x&S = s(x) | ~✓)
= P(X = x|S = s(x), ~✓)P(S = s(x)| ~✓)
= P(X = x|S = s(x))P(S = s(x)| ~✓) [since S is su�cient]

= h(x)g(s(x), ~✓).
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Conversely, if (51) holds, then for any given s there is a subset As of X in which s(x) = s;
for x in As

P(X = x|S = s, ~✓) =
fX(y| ~✓)P

z2As
fX(z| ~✓)

=
h(x)P

z2As
h(z)

,

while for x 62 As P(X = x|S = s, ~✓) = 0. Thus the conditional distribution does not depend
on ~✓, i.e. S is su�cient for ~✓.

Note: the statistic s(x) divides the sample space X into equivalence classes As (one for
each value of s). This partitioning of X is unchanged if s is replaced by any one-to-one
function of s.

Examples

• Bernoulli trials
L(p;y) = p

P
xj(1� p)n�

P
xj ,

so if s(x) =
P

xj, we could take h(x) = 1, g(s, p) = ps(1� p)n�s

[or, alternatively, we could take h(x) =

✓
n
s

◆�1

, g(s, p) =

✓
n
s

◆
ps(1� p)n�s ].

• Pois(�), with s =
P

xi we have the factorization

L(�;x) = (
Y

xj!)
�1 · e�n��s

• The Gamma distribution �(↵,�)

pX(x|↵,�) =
nY

j=1

"
�↵x↵�1

j
e��xj

�(↵)

#
=
�n↵(

Q
j
xj)↵�1e��

P
xj

{�(↵)}n = 1 · �
n↵(s2)↵�1e��s1

{�(↵)}n

Therefore, (s1, s2) = (
P

xj,
Q

xj) is su�cient for (↵,�).

• In a gravitational wave context, reduced order models are used to form a basis for the
space of waveforms. Given a set {hi(t)} of basis functions that describe a waveform
model, the set {(d|hi)} of overlaps of the basis functions with the data are su�cient
statistics for deducing the waveform parameters.

2.5 Minimal su�ciency

(Non-trivial) su�ciency leads to a reduction in the data; su�cient statistics achieving the
greatest reduction are called minimal su�cient, i.e. a minimal su�cient statistic is a
function of all other su�cient statistics.

While such statistics are usually obvious, a general method for finding them is implied
from the following lemma.

Lemma 1. Consider the following partition of the sample space of X = (X1, . . . , Xn) 2 X n:
x,y 2 X n belong to the same class of the partition if and only if L(~✓;x)/L(~✓;y) does not
depend on ~✓.

Then, any statistic defining this partition is minimal su�cient.
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Example

• Weibull distribution: {X1, . . . , Xn} IID from Weibull with pdf

p(y|↵,�) = ↵�↵x↵�1 exp[�(�x)↵] (x > 0;↵,� > 0)

Then

L(↵,�;x) = ↵n�n↵(
nY

j=1

xj)
↵�1 exp(��↵

X
x↵

j
)

For L(↵,�; z)/L(↵,�;y) not to depend on ↵,�, the zj must be some permutation of
the xj, but no other reduction in the data retains su�ciency, i.e. the order statistics
x(1)  . . .  x(n) are minimal su�cient.

2.6 Exponential families of distributions

A family of distributions indexed by a multivariate parameter ~✓ 2 ⇥ ⇢ Rp, is an exponential
family i↵ for some real-valued functions {Aj; j = 1 . . . , K}, {Bj; j = 1 . . . , K}, C,D the
pdf has the form

p(x| ✓) = exp

(
KX

j=1

Aj(x)Bj(~✓) + C(~✓) +D(x)

)
8x, ~✓ (52)

Given observations {x1, . . . , xn}, the set of K statistics {
P

n

j=1
Ai(xj) : 1  i  K} are

su�cient for ~✓ and they are called the natural statistics of the exponential family
In fact, for a K-dimensional parameter ~✓, the minimal su�cient statistic vector is also K-

dimensional only for the distributions from the exponential family (under certain regularity
conditions, which are the same as those that apply for the validity of the Cramer-Rao
inequality described below).

Example. N(µ, �2):

p(x|µ, �) = exp

⇢
µ��2x� 1

2
��2x2 �

✓
1

2
µ2��2 + ln � +

1

2
ln(2⇡)

◆�
,

and B1(µ, �) = µ��2, B2(µ, �) = �1

2
��2, A1(x) = x, A2(x) = x2. The vector S =

(
P

i
xi,

P
i
x2

i
) based on sample (x1, . . . , xn) is su�cient for ~✓ = (µ, �).

2.7 Estimators

Recall that an estimator is a statistic (i.e., a function of data only) that is used to obtain an
estimate of one or more parameters of the underlying distribution. Often we consider point
estimators which are single valued functions b✓(X1, . . . , Xn) of X1, . . . , Xn.

Examples of point estimators:

1. if ✓ = E(X), we can take b✓ to be mean, median, mode of the empirical distribution;
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2. moment estimators, including the sample mean

µ̂ =
1

n

nX

i=1

xi

and the sample variance

�̂2 =
1

n� 1

nX

i=1

(xi � µ̂)2 .

3. MLE - maximum likelihood estimator, which minimizes the score.

Typically there will be several possible estimators of a parameter ✓. To choose between
estimators we will define various desirable properties: unbiasedness, consistency and e�-
ciency. Admissibility and su�ciency are also desirable properties but we won’t discuss these
here. Su�ciency of an estimator is closely related to su�ciency of a statistic. Robustness
and ease of computation are not considered in this course, but may be important in practical
applications.

2.7.1 Unbiasedness

Definition 1. b✓ (r.v.) is an unbiased estimator of ✓ i↵

E(b✓) = ✓.

If E(b✓) 6= ✓ then b✓ is a biased estimator and we define the bias function of b✓ as

bias(b✓) = E(b✓)� ✓.

As an example, suppose ✓ is a population mean, then the sample mean X̄ is unbiased. Also,
X1 (first observation in sample) is unbiased, and if the distribution is symmetric so is the
sample median.

There are often several unbiased estimators to choose from, but which is best?
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Unbiasedness is not necessarily required for all estimation problems, e.g.,

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

θ1

θ2

True value b✓1 (with wide density) and
b✓2 (with narrow density)
are estimators of ✓;
b✓1 is unbiased;
b✓2 is biased;
but b✓2 may be preferred because it is
less likely to be a long way from ✓.

Biased estimators may be preferred to unbiased estimators in some circumstances. A
good property is asymptotic unbiasedness.

Definition 2. b✓ (r.v.) is asymptotically unbiased estimator of ✓ i↵

E(b✓) ! ✓ as n ! 1.

2.7.2 Consistency

As sample size is increased the sampling pdf of any reasonable estimator should become
more closely concentrated about ✓.

Definition 3. b✓ is a (weakly) consistent estimator for ✓ if

P(| b✓ � ✓ |> ✏) ! 0 as n ! 1

for any ✏ > 0.

For a particular problem, it may be di�cult to verify consistency from this definition,
however, a su�cient (not necessary) condition for consistency is given in the lemma below.

Lemma 2. If var (b✓) ! 0 and bias(b✓) ! 0 as n ! 1, then b✓ is (weakly) consistent.

Definition 4. The mean square error of an estimator b✓ is defined as

MSE(b✓) = E[(b✓ � ✓)2] = var(b✓) + [bias(b✓)]2.

Mean squared error consists of two terms: variance of b✓ and its squared bias.
The Markov inequality states that, for a non-negative random variable X and a > 0

P(X � a)  E(X)

a

which can be proved straightforwardly

E(X) =

Z 1

0

xp(x)dx =

Z
a

0

xp(x)dx+

Z 1

a

xp(x)dx �
Z 1

a

xp(x)dx � a

Z 1

a

p(x)dx = aP(X � a).
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Setting X = (✓̂ � ✓)2 and a = ✏2 we find

P[| b✓ � ✓ |> ✏]  1

✏2
E(b✓ � ✓)2.

The term on the right had side is the mean square error. If both bias and variance tend
to zero asymptotically, the mean square error tends to zero and therefore the left hand side
must tend to zero. Hence we have proven Lemma 2.

Examples

1. Estimation of the mean of a normal distribution: using the sample mean X̄ or median
or just the value of X1 (first observation in sample) are all unbiased estimators and
have variances �

2

n
, ↵�

2

n
(↵ is a constant > 1) and �2. Therefore the first two are

consistent. However, it is evident that X1 is not consistent as its distribution does not
change with sample size.

2. The Cauchy distribution with scale 1 and pdf p(x| ✓) = ⇡�1[1+(x�x0)2]�1. In this case,
the sample mean X̄ has the same distribution as any single Xi, thus P[| X̄ � x0 |> ✏]
is the same for any n. This does not tend to zero as n ! 1, and so X̄ is not (weakly)
consistent. (However, the sample median is a consistent estimator of x0.)

2.8 E�ciency

Definition 5. The e�ciency of an unbiased estimator (b✓) is the ratio of the minimum
possible variance to var(b✓).

Definition 6. An unbiased estimator with e�ciency equal to 1 is called e�cient or a
minimum variance unbiased estimator (MVUE).

We can also define asymptotic e�ciency of an (asymptotically) unbiased estimator (b✓) is
the limit of the ratio of the minimum possible variance to var(b✓) as sample size n ! 1.

Definition 7. An estimator with asymptotic e�ciency equal to 1 is called asymptotically
e�cient.

We can compare the e�ciency of two estimators in the following way.

Definition 8. The (asymptotic) relative e�ciency of two unbiased estimators b✓1 and
b✓2 is the reciprocal of the ratio of their variances, as sample size ! 1: limn!1

V ar(b✓1)
V ar(b✓2)

.

The definition of asymptotic relative e�ciency can also be extended to asymptotically
unbiased estimators. These definitions are all fine, but they rely on knowing what the
smallest possible variance is. Under certain assumptions we can obtain this from the Cramér-
Rao inequality.
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2.8.1 Cramér-Rao lower bound (inequality)

The theorem below (Cramér-Rao inequality) provides a lower bound on the variance of an
estimator. When this lower bound is attainable for unbiased estimators, it can be used in
the definition of e�ciency.

Regularity conditions for the Cramér-Rao inequality.

1. 8✓1, ✓2 2 ⇥ such that ✓1 6= ✓2, p(x | ✓1) 6= p(x | ✓2) [identifiability].

2. 8✓ 2 ⇥, p(x | ✓) have common support.

3. ⇥ is an open set.

4. 9@p(x | ✓)/@✓.

5. E (@ log p(X|✓)/@✓)2 < 1.

Here I(✓) = E
⇣

@ log f(X|✓)
@✓

⌘2

is the Fisher information matrix.

Theorem 2. (Cramér-Rao inequality) Let X1, . . . , Xn denote a random sample from p(x| ✓),
and suppose that b✓ is an estimator for ✓. Then, subject to the above regularity conditions,

var(b✓) �
�
1 + @b

@✓

�2

I✓
,

where

b(✓) = bias(b✓) and I✓ = E
"✓

@`

@✓

◆2
#
.

Comments

1. For unbiased b✓, the lower bound simplifies to var(b✓) � I�1

✓
.

2. I✓ is called Fisher’s information about ✓ contained in the observations.

3. Regularity conditions are needed to change the order of di↵erentiation and integration
in the proof given below.

4. The result can be extended to estimators of functions of ✓.

Proof of Theorem 2.

E[b✓] =

Z
. . .

Z
b✓(x1, . . . , xn)

(
nY

i=1

p(xi| ✓)
)
dx

=

Z
. . .

Z
b✓(x1, x2, . . . , xn)L(✓;x)dx

R
. . .

R
is a multiple integral with respect to x=(x1, x2, . . . , xn).

From the definition of bias we have

✓ + b = E(b✓) =
Z

. . .

Z
b✓L(✓;x)dx.
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Di↵erentiating both sides with respect to ✓ gives (using regularity conditions)

1 +
@b

@✓
=

Z
. . .

Z
b✓@L
@✓

dx

since b✓ does not depend on ✓. Since l = ln(L) we have

@l

@✓
=
@ln(L)

@✓
=

1

L

@L

@✓
, and thus

@L

@✓
= L

@l

@✓
.

Thus

1 +
@b

@✓
=

Z
. . .

Z
b✓ @l
@✓

Ldx = E
✓
b✓ @l
@✓

◆
.

Now use the result that for any two r.v.s Uand V ,

{cov(U, V )}2  var(U)var(V )

and let

U = b✓, and V = @l/@✓.

Then

E[V ] =

Z
. . .

Z
@l

@✓
Ldx =

Z
. . .

Z
@L

@✓
dx

=
@

@✓

✓Z
. . .

Z
L dx

◆
(using regularity conditions)

=
@

@✓
(1) = 0.

Hence

cov(U, V ) = E(UV ) = 1 +
@b

@✓
.

Similarly

var(V ) = E(V 2) = E
"✓

@l

@✓

◆2
#
= I✓ (by definition of I✓)

and since var(U) = var(b✓) we obtain the Cramér-Rao lower bound as

var(b✓) � {cov(U, V )}2

var(V )
=

�
1 + @b

@✓

�2

I✓
.

The Cramér-Rao lower bound will only be useful if it is attainable or at least nearly
attainable.
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Lemma 3. The Cramér-Rao lower bound is attainable i↵ there exists a function f(x) of x
only, and functions a(✓), c(✓) of ✓ only such that

@l

@✓
=

(f(x)� a(✓))

c(✓)
,

in which case b✓ = f(x) attains it. The expectation value E✓✓̂ = a(✓) and da/d✓ = c(✓)I✓.

Corollary 1. There is an unbiased estimator that attains the Cramér-Rao lower bound i↵
there exists a function g(x) of x only such that

@l

@✓
= I✓(g(x)� ✓),

in which case the unbiased estimator b✓ = g(x) attains it.

Lemma 4. Under the same regularity conditions as for the Cramér-Rao lower bound

I✓ = �E

@2l

@✓2

�

Example
X1, X2, . . . , Xn ⇠ N(µ, �2), �2 known.
Likelihood for µ

L(µ;x) =
nY

i=1

(2⇡�2)�
1
2 exp

⇢
� 1

2�2
(xi � µ)2

�

log likelihood for µ

l = logL = �n

2
log(2⇡�2)� 1

2�2

nX

i=1

(xi � µ)2

Thus we have
@l

@µ
=

1

�2

nX

i=1

(xi � µ),
@2l

@µ2
= � n

�2
,

and

I✓ = E

� @2l

@µ2

�
=

n

�2
.

The lower bound for unbiased estimators is I�1

✓
= �

2

n
. However,

var(X̄) =
�2

n
,

so X̄ attains its lower bound. No other unbiased estimator can have smaller variance than
X̄. Therefore X̄ is MVUE.

Alternatively, we can use Lemma 3, and

@l

@µ
=

1

�2

X
(Xi � µ) =

n

�2
(X̄ � µ)
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Therefore the bound is attainable.
Regularity conditions are essential to be able to use the lower bound. Consider the

uniform distribution case X1, X2, . . . , Xn ⇠ U [0, ✓]

L(✓;x) =

⇢
1

✓n
0  x(1)  x(2)  . . . , x(n)  ✓

0 elsewhere

In the range where L is di↵erentiable l = �n log ✓

@l

@✓
= �n

✓
and

@2l

@✓2
=

n

✓2
.

Thus

I✓ = E
"✓

@l

@✓

◆2
#
=

n2

✓2

but

E

� @2l

@✓2

�
=

�n

✓2
.

Therefore the lower bound should be ✓
2

n2 , but

var


n+ 1

n
X(n)

�
=

✓2

n(n+ 2)
< I�1

✓
.

The lower bound is violated because the regularity conditions don’t hold. In particular the
second condition is violated, since the support of the distribution depends on ✓.

The derivation and examples above were all for a one dimensional parameter. The cor-
responding result for the multiple parameter case is

cov(ti, tj) �
@mi

@✓k
[I✓]

�1

kl

@mj

@✓l
, [I✓]ij = E


@l

@✓i

@l

@✓j

�
,

where t is the realised value of some multi-dimensional statistic T and m = ~✓ + b = E(T).

2.9 Rao-Blackwell Theorem

The Rao-Blackwell theorem gives a method of improving an unbiased estimator, and involves
conditioning on a su�cient statistic.

Theorem 3. (Rao-Blackwell theorem). Let X1, X2, . . . , Xn be a random sample of observa-
tions from a distribution with pdf p(x| ✓). Suppose that S is a su�cient statistic for ✓ and
that b✓ is any unbiased estimator for ✓. Define b✓S = E[b✓ | S]. Then

(a) b✓S is a function of S only;

(b) E[b✓S] = ✓;

(c) var b✓S  var b✓.
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2.10 Maximum likelihood estimators

Definition 9. The maximum likelihood estimator (MLE) is defined by b✓ = argmax✓2⇥ L(✓;x) =
argmax✓2⇥ `(✓;x).

If 9@`/@✓j and ⇥ is open, then the MLE b✓ satisfies @`/@✓j(b✓) = 0, j = 1, . . . , K, ✓ 2 ⇥ ⇢
RK .

The MLE can be biased or unbiased but it is asymptotically unbiased and e�cient and
it is also consistent. In fact the following lemma holds.

Lemma 5. Let X1, . . . , Xn ⇠ p(x | ✓) IID, ✓ 2 ⇥ ⇢ RK. Under the regularity conditions of
Cramer-Rao inequality, the MLE asymptotically satisfies

b✓ ⇠ NK(✓, I
�1

✓
) n ! 1,

in particular, E(b✓) ! ✓ and for K = 1, Var(b✓)/I�1

✓
! 1 as n ! 1.

If there exists an unbiased e�cient estimator this has to be the MLE.

Lemma 6. Suppose there exists an unbiased estimator ✓̃ that attains Cramer-Rao lower
bound, and suppose that MLE ✓̂ is the solution of @`

@✓
= 0. Then, ✓̃ = ✓̂.

Proof. ✓̃ is unbiased and attains Cramer-Rao lower bound, hence, by the corollary to Lemma 3,
@`

@✓
= I✓(✓̃ � ✓). Then, the only solution of @`

@✓
= 0 is ✓̃, that is, ✓̃ = ✓̂.

Thus, (under the regularity conditions of Cramer-Rao inequality) if the Cramer-Rao lower
bound is attainable, the MLE attains it, thus in this case the MLE is e�cient. If the bound
is unattainable, then the MLE is asymptotically e�cient.

2.11 Confidence intervals and regions

Point estimators provide single estimated values for parameters, but we usually also need an
estimate of the uncertainty in those estimated values. These are characterised by confidence
intervals. A confidence interval is a random variable since the ends of the interval are
typically determined as a function of the observed data. The interval has the property that
over many realisations of the same experiment, the intervals constructed randomly by this
procedure will contain the true value of the parameter a certain fraction of the time.

Formally a set S↵(X) is a (1� ↵) confidence region for  if

P(S↵(X) 3  ; ,�) = 1� ↵ 8 ,�.

Thus, S↵(X) is a random set of  -values which includes the true value with probability 1�↵.
If more than one value of ↵ is considered, we usually require

S↵1(x) � S↵2(x) if ↵1 < ↵2. (53)

e.g. a 99% region contains the 95% region.
If  is a scalar and S↵(x) has the form { : t↵ �  } for some statistic t↵, then t↵ is a

(1� ↵) upper confidence limit for  .
If  is a scalar and S↵(x) has the form { : s↵   } for some statistic s↵, then s↵ is a ↵

lower confidence limit for  .
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If S↵(x) = { : a↵(x)    b↵(x)}, it is a two-sided confidence interval.
A two-sided confidence interval is called equitailed if a↵(x) is the ↵/2 lower confidence

limit and b↵(x) is the 1� ↵/2 upper confidence limit.
A high density confidence region is {✓ 2 ⇥ : p(x|✓) � K↵} where the constant K↵

is determined by the condition P{p(X|✓) � K↵} = 1� ↵.
Confidence intervals/regions for estimators can be constructed by identifying pivotal

quantities. A pivotal quantity U = u(X, ) is a scalar function of X and  with the same
distribution for all  and �. If u↵ is the upper ↵ point of this distribution, then

P(u(X, )  u↵) = 1� ↵,

so that the set { : u(x, )  u↵} defines a (1� ↵) confidence region for  .
If  is a scalar and u(mathbfx, ) is monotone in  , this yields a one-sided interval.

In this case we may also define two-sided intervals by { : u↵L  u(x, )  u↵U} with
↵U � ↵L = 1� ↵.

Examples of pivotal quantities

• E(�): 2✓
P

Xj which has distribution �2(2n);

• N(µ, �2), inference about µ with � unknown:
p
n(x̄ � µ)/s which has distribution

t(n� 1);

• Ratio of two Normal variances: (s2
1
/�2

1
)/(s2

2
/�2

2
) which has distribution F (n1�1, n2�1).


