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Stochastic processes

❖ We encountered stochastic processes when we discussed instrumental noise and 
again in the team series lectures. Stochastic processes are random procedures that 
generate a continuous sequence of events.

❖ Stochastic processes can also be used to generate realisations of formally infinitely-
dimensional probability distributions.

❖ We will discuss two particular types of stochastic process.

❖ Gaussian processes are infinite dimensional generalisations of Gaussian 
distributions, a realisation of which is a correlated random field.

❖ Dirichlet processes are infinite dimensional generalisations of the Dirichlet 
distribution, a realisation of which is a probability distribution.



What are Gaussian processes?

❖ A Gaussian process (GP) is an infinite dimensional generalisation of a multi-variate 
Gaussian distribution.

❖ Any finite subset of samples are distributed as a multi-variate Gaussian.

❖ For example, if y(x)~GP(m(x), k(xi, xj)), then the values {yi=y(xi)} at points x1, x2, …, xn 
follow

❖ Here mi=m(xi) and Kij=k(xi, xj). The functions m(x) and k(xi, xj) are the mean and 
covariance function of the GP.
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Gaussian process regression

❖ Can use GPs for regression. Represent the true values of the unknown function as a 
(often zero mean) GP.

❖ Assume we have a training set of points where the function is known (possibly with 
error).

❖ The value of the function at a new point or set of points is found by conditioning on 
the observed values.

y(x) ⇠ GP(m(x), k(xi,xj))
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Gaussian process regression
❖ At a new set of points, {zi}, we denote the vector of new values by y with yi=y(zi). 

We have 

p(y) / exp


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❖ where the mean and covariance matrix of this Gaussian distribution are given by 

Kij = k(xi,xj) + �2
i �ij



GPR example - quadratic regression
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Comparison - quadratic regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

xpts

yp
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●



Comparison - quadratic regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

xpts

yp
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●



Comparison - quadratic regression
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Comparison - quadratic regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

xpts

yp
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●



Comparison - quadratic regression
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Comparison - linear regression
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Gaussian process kernels

❖ The effectiveness of the method depends on the choice of covariance function.

❖ Common to use stationary (depends only on                    ) and isotropic (depends 
only on                                ) covariance functions.

❖ Need to define a distance metric on parameter space

❖ and a function of distance,           .

❖ Squared exponential
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❖ Power-law exponential

❖ Cauchy

❖ Matern

❖ Or covariance functions with compact support, e.g., Wendland polynomials.
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Gaussian process kernels
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Kernel hyperparameters

❖ Kernel functions depend on a number of hyperparameters.

❖ Determine these from the hyperlikelihood for the training set.

❖ Can find optimal hyperparameters via maximisation or obtain a posterior 
distribution for the parameters that can subsequently be marginalised over.

p({di}) =
1p

(2⇡)n|K|
exp

2

4�1

2

X

ij

(di �m(xi))K
�1
ij (dj �m(xj))
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Kernel hyperparameters
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Example: GW model uncertainty

❖ Inference using accurate models can be 
computationally prohibitive.

❖ For example, gravitational wave models can 
be computed accurately using numerical 
relativity, but each simulation takes many 
days.

❖ Inference must therefore rely on 
approximations.



The trouble with approximations
❖ Use of approximate models leads to bias in parameter inference.

16

FIG. 3: Posterior probability distributions for the dimensionless spin magnitude of the heavier (left) and lighter (right) com-
ponents of the binary from the non-spinning BBH hardware injection (section IIIA 1), as inferred in the model ST (table I),
full-spin STPN. The injection was made with a1 = a2 = 0.

FIG. 4: (left) Posterior probability distributions for the chirp mass M of the non-spinning BNS hardware injection (section
IIIA 2) for the seven signal models considered. The injected value is marked with a vertical red line. (right) Overlay of 90%
probability regions for the joint posterior distribution on the component masses m1, m2 of the binary. The true value is marked
by the blue star.

Aasi, …, JG, et al. (LVC) (2013)



❖ Inference for gravitational wave detectors uses a likelihood

❖ The exact model,                               , is expensive to compute. Instead we use 
approximations           ,                   . 

❖ We can fold model uncertainties into inference by modelling the difference,                                          
.                                                    , as a GP, conditioned on available simulations, and 
marginalising over the difference distribution. 
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Example: GW model uncertainty



❖ Assuming the numerical simulations are perfect, the GP probability distribution        
for               is

❖ The corresponding marginalised likelihood for the data is
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Example: GW model uncertainty



❖ Use Matern covariance function - hyperparameters favour squared-exponential.

GW model uncertainty: hyperparameters
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GW model uncertainty: mean
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GW model uncertainty: marginalised likelihood
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Other examples from gravitational waves
❖ Williams et al. (2020) also used GPs to build a waveform model with associated 

uncertainty estimates, but by directly training on numerical relativity simulations.
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FIG. 2. GPR predictions, compared to NR. One hundred draws from the Gaussian process (left panel) for a non-
spinning configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 0.625) with a total mass of 60-solar masses, shown as light grey
lines compared to a single analytical approximant model, IMRPhenomPv2 in blue. The mean draw from the Gaussian process
is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding the mean. In the
right panel the distribution of mismatches between the samples and both phenomenological waveforms are shown, with the
vertical lines representing the mismatch between the GPR and the phenomenological waveform. The di↵erences between the
phenomenological model and the GPR model waveforms are seen to also exist between the phenomenological model waveforms
and the NR-derived waveform, plotted here in pink.

FIG. 3. Non-spinning waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning, equal-mass
configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 1.0) with a total mass of 60-solar masses, shown as light grey lines compared
to two analytical approximant models, SEOBNRv4 and IMRPhenomPv2 in red and blue respectively. The mean draw from the
Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding
the mean. In the right panel the distribution of mismatches between the samples and both phenomenological waveforms are
shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

able, and in principal can facilitate accurate inference
on detected signals. However, the expense of produc-
ing them limits their coverage of the parameter space;
as a result of this lack of coverage, and the considerable
time requirements to produce new waveforms, any infer-
ence method which relied solely on NR techniques could
not hope to satisfy the requirement to rapidly charac-
terise signals, and would not be practical in a scenario
where multiple events are detected every month. Phe-
nomenological models, which can be evaluated rapidly,
are available, which attempt to interpolate across a large
volume of the parameter space, but the accuracy of the
waveforms which they produce can be di�cult to assess.

Ths leads to the possibility of introducing biases into the
inferred properties of the system which generated the sig-
nal.

In this paper we have laid-out an approach to improv-
ing the accuracy of gravitational wave parameter estima-
tion in the context of limited template availability by im-
plementing a waveform approximant model using GPR,
providing not only a point-estimate of the waveform at
any point in the BBH parameter space, but also a distri-
bution of plausible waveforms, allowing the uncertainty
of the interpolation to be taken into account during the
analysis. In contrast to previous attemptes to produce a
GPR model for GW waveforms, such as [7], our model

8
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FIG. 4. Anti-aligned spin waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning,
equal-mass configuration (~s1 = (0, 0, 0.6), ~s2 = (0, 0,�0.6), ~q = 1.0) with a total mass of 60-solar masses, shown as light grey
lines compared to two analytical approximant models, SEOBNRv4 and IMRPhenomPv2 in red and blue respectively. The mean
draw from the Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region
surrounding the mean. In the right panel the distribution of mismatches between the samples and both phenomenological
waveforms are shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

FIG. 5. Precessing waveform. One hundred draws from the Gaussian process (left panel) for a precessing system, with
a mass ratio q = 0.25, and a spin configuration (~s1 = (0.413, 0.093, 0.425), ~s2 = (�0.004, 0.013, 0.6)) with a total mass of
60-solar masses, shown as light grey lines compared to a single analytical approximant model, IMRPhenomPv2 in blue. The mean
draw from the Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region
surrounding the mean. In the right panel the distribution of mismatches between the samples and both phenomenological
waveforms are shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

is trained on data from the Georgia Tech NR waveform
catalogue, described in section IIIA.

We introduced GPR in section II as a non-parametric
regression method. This property allows the regression
model to be constructed while making minimal assump-
tions about the form of the waveforms, which are en-
coded through the form of the covariance function. We
discuss covariance functions in section IIA, and describe
the choice made for our model in section III B. In order
to reduce the computational burdon of evaluating the
model a hierarchical matrix inversion method was used
(described in [11] and discussed in section III C) in com-
bination with a covariance function with finite support.

We present a number of waveforms which have been
produced by our GPR model in section IV, and make
comparisons between its output and two phenomenolog-
ical models. These comparisons show a di↵erence be-
tween the behaviour of the two models which is most
pronounced during the inspiral section of the waveform.
This di↵erence also occurs between the phenomenological
model and the waveform produced from NR. A number
of phenomena are likely to have contributed to this dis-
crepancy. One such di↵erence in the systematic errors of
the NR simulations used to produce the training data for
the GPR model compared to those used to calibrate the
phenomenological models. Additionally, the relatively
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❖ Landry & Essick (2019) and Essick, Landry and Holz (2019) used GPs to interpolate 

equation of state models and represent uncertainties in the EoS family.
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FIG. 1. Example synthetic EOSs drawn from our (left) agnostic and (right) informed nonparametric priors, constructed
as mixture models with equal prior odds for hadronic, hyperonic, and quark compositions. Draws from the prior are colored
according to the maximum nonrotating NS mass they support: blue for Mmax � 1.93M�, and black otherwise. Candidate
EOSs from the literature, used as input for our GPs, are shown in red (see Table VII). Vertical lines indicate once, twice and
six times nuclear saturation density.
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Z
dM1dM2 p(M1,M2|H)L

⇣
data
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(↵)(M1),⇤

(↵)(M2)
⌘
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2 ⇠ P (M1,M2|H) , (13)

where ⇤(↵) is the mass-tidal deformability relation implicitly defined by "
(↵). It is worth noting that several sets of

samples are publicly accessible. Our specific choice is not expected to significantly a↵ect our conclusions, although
our precise quantitative results will depend on issues like waveform systematics discussed in Ref. [41]. Drawing "

(↵)

from our prior and associating this marginal likelihood with each sample generates the posterior process. This also
allows us to immediately estimate the evidence for each prior, up to a common normalization constant:

P (d|{"}A,H) ⇡
1

N↵

N↵X

↵

1

Ni

NiX

i

L

⇣
data

���M (i)
1 ,M

(i)
2 ,⇤(↵)(M (i)

1 ),⇤(↵)(M (i)
2 )

⌘ ����
M

(i)
1 ,M

(i)
2 ⇠ P (M1,M2|H)

"
(↵)

⇠ P ("|{"}A)
, (14)

where we draw Ni mass realizations for each of the N↵

EOS realizations. Within this Monte-Carlo algorithm,
we optimize our KDE model for L(d| · · · ) by selecting
bandwidths that maximize a cross-validation likelihood
based on the public samples (see Appendix B).

The overarching composition-marginalized priors are
constructed hierarchically, assuming equal prior odds for

each composition, which is to say

P (data|X) =

1

3

⇥
P (data|X; Hadronic)

+ P (data|X; Hyperonic)

+ P (data|X; Quark)
⇤

(15)

for informed and agnostic priors processes separately. In
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synthesis codes for use in constraining astrophysical models with GW observations.
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FIG. 6. Testing the accuracy of our GP emulator for the model of Eq. (33). In the left panel we create training data on an
evenly-spaced 8⇥8 grid in log10 �1,2 space (red points). We achieve a data compression factor of ⇠ 500, then train a GP in each
of the reduced basis features. The GP prediction is compared to the analytic result across �1,2 space by taking the GP-mean
(o↵set by 1 �), rotating back to the full z1,2 basis, then finding the maximum di↵erence from the analytic value in any z1,2 bin.
Low accuracy locations are used to inform the positions at which new simulations are performed. These additional points are
shown in the right panel as empty circles, where we see that their addition improves accuracy across the entire hyper-parameter
space.
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FIG. 7. Comparison of posterior recoveries of population
hyper-parameters from a catalog of 100 sources with spin-
alignment distribution given by Eq. (33) [82]. The true hyper-
parameter coordinate, {�1 = 0.45,�2 = 0.45} is indicated via
intersecting white dashed lines.

will always be positive. We can now predict the distri-
bution values in compressed parameter space, and rotate
this back into the full parameter space to construct the
final predictions.

Figure 6 shows validation studies for di↵erent num-
bers of initial training data. For an evenly-spaced grid of
8 ⇥ 8 = 64 training datasets in hyper-parameter space,
we achieve an accuracy of better than ⇠ 50% across the
majority of the space. The worst performance occurs in
parts of hyper-parameter space that are voids of simula-
tions. We find the 36 worst accuracy locations, and add
these as additional simulations to improve accuracy to
better than 10%. Similar accuracy is given by an Latin-
hypercube design of 100 training datasets.

We now test our framework on a simulated popula-
tion, consisting of 100 sources drawn from p(z1, z2) with
� = {�1 = 0.45, �2 = 0.45}. A comparison of the joint
posterior probability distribution of {�1, �2} as recovered
by the analytic model [Eq. (33)] and the GP framework
is shown in Fig. 7. The GP framework is trained on 100
simulations from a Latin-hypercube design; we use this
design because it is our standard approach for e�ciently
sampling the high-dimensional hyper-parameter space of
binary stellar evolution, and it gives similar emulation ac-
curacy to the adaptive design in the right panel of Fig. 6.
In this analysis, we have propagated all uncertainties
from the GP prediction and the hyper-parameters of the
trained GP covariance function into the final model. The
agreement is excellent, with the true hyper-parameter co-
ordinate lying well within the 68% credible region of both
techniques. We have not incorporated the e↵ect of indi-

12

0.05 0.10 0.15 0.20 0.25
Z/Z�

0.0

2.5

5.0

7.5

10.0

PD
F

Z 6
8
=

0.
12

Z �

Z 9
0
=

0.
16

Z �

FIG. 8. Posterior probability distribution of progenitor metal-
licity Z, as inferred by an analysis of the current BH catalog
in Table I using a model for the chirp mass distribution that
is conditioned on simulations from [25]. Dashed vertical lines
marks the 68% and 90% confidence intervals.

was trained (including some sharp features), namely that
the distribution of chirp masses shifts to smaller values
as the progenitor metallicity is increased. Physically, this
is because stellar winds are weaker in stars with lower
metallicity, that thus tend to form heavier BHs like the
ones detected by Advanced LIGO [25, 34–36]. The events
of the current binary BH catalog are shown as vertical
bands corresponding to the 90% credible region of chirp
mass.

C. BSE Population Synthesis

To further showcase the e↵ectiveness of our statistical
framework, we now consider a more elaborate set of input
data. We perform a dedicated program of population-
synthesis simulations to predict properties of BH binaries
from isolated binary stars.

We use a modified version of the public population syn-
thesis code BSE [18, 90]. The modifications implemented
here are the same described in Refs. [36, 91]: wind mass
loss prescriptions according to Ref. [92] and core-collapse
remnant mass relationship following Ref. [20]. These
minimal updates are necessary to generate any BHs of
masses & 10M� like the ones that are now detected,
and thus to attempt a comparison with the Advanced-
LIGO–Advanced-Virgo data. We stress, however, that
this study is not meant to rival with the full complex-
ity of state-of-the-art binary evolution codes, but rather
highlight the potential of our inference pipeline.
BSE requires us to specify distributions of binary stars

on their zero-age main sequence (ZAMS), and a variety
of flags encoding assumptions of the underlying stellar
physics. We distribute primary masses m1 from an ini-
tial mass function p(m1) / m�2.3

1 in [5, 100]M�; mass
ratios q = m2/m1 uniformly in [0, 1]; initial separations

R uniformly in log10 in [10, 105]R�; eccentricities e from
a thermal distribution p(e) / e; and redshifts z uniformly
in comoving volume using the Plank cosmology [93] (c.f.
Ref. [29] for similar choices).

The evolutionary flags are the quantities that should be
treated as hyper-parameters, and that could potentially
be constrained with current and future catalogs of GW
events. For simplicity, we present results considering a
3-dimensional hyper-parameter space, but our method is
fully generalizable and scalable to higher dimensions. We
fix all flags to their default value in BSE, except for the
following three:

1. Metallicity of the ZAMS star: Z. As already
highlighted above, the progenitor metallicity has a
large impact on the properties of the resulting BHs.
Metallicity strongly a↵ects massive star winds and
thus the mass that remains available to form the
final compact object [22, 24, 92, 94–97]. Here we
consider a metallicity range 0.0001  Z  0.03
where Z� = 0.02 [18].

2. Kicks imparted to BHs at formation: �k. As
stars collapse (perhaps exploding into supernovae),
asymmetries in the emitted material and neutri-
nos may impart a recoil to the newly formed com-
pact object (e.g. Ref. [98]). Observations of galactic
pulsar proper motions suggest that NS recoils are
well modeled by a single Maxwellian distribution
with 1D root-mean-square �k ⇠ 265 km/s [99, 100].
Whether BHs receive any kick at formation is still
a matter of debate. On the one hand, X-ray binary
measurements hint at large kick velocities [101] (c.f.
also Ref. [102] for a GW constraint). Conversely,
theoretical arguments and simulations suggest that
kicks for BHs might be suppressed because of ma-
terial falling back after the explosion [98, 103, 104].
This is a clear case where a method like ours, al-
lowing for a direct estimate of �k, might show its
potential. We consider BH recoils in the range
0 km/s  �k  265 km/s independently of BH mass
or other parameters (see Ref. [40] for a discussion
of this point).

3. E�ciency of the common envelope: ↵ce. After the
first star collapses, the binary system consists of a
BH and an extended star. As this second star ex-
pands into a supergiant, it may overflow its Roche
Lobe and undergo unstable mass transfer to the
BH [105–108]. The envelope of the giant engulfs
the companion BH. In this process, known as the
common-envelope stage, a fraction ↵ce of the bi-
nary’s orbital energy is transferred to the enve-
lope, thus hardening the binary. In the standard
evolutionary channel considered here, common en-
velope evolution is the key stage to produce BHs
able to merge within a Hubble time. The details
of the common envelope phase are still very uncer-
tain [109–112], and are arguably one of the most

Etc. etc…….there are now many
GW related papers that use GPs,
all written in the past 5 years.



Dirichlet processes
❖ In the same way that a Gaussian process is 

an infinite dimensional extension of a 
Gaussian distribution, a Dirichlet process is 
an infinite dimensional extension of a 
Dirichlet distribution, which is a multivariate 
distribution, generating K samples {xi} 
constrained such that 0 < xi < 1 and        

❖ The distribution depends on a vector of 
concentration parameters

❖ and has pdf
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1.3.9 Dirichlet distribution

The Dirichlet distribution is a multivariate extension of the Beta distribution. A realisation of
a Dirichlet random variable is a set ofK values, {xi}, satisfying the constraints 0 < xi < 1 for
all i and

P
K

i=1
xi = 1. The Dirichlet distribution is characterised by a vector of concentration

parameters ~↵ = (↵1, . . . ,↵K) satisfying ↵i > 0 for all i and has pdf

p(x) =
1

B(~↵)

KY

i=1

x↵i�1

i
, where B(~↵) =

Q
K

i=1
�(↵i)

�
⇣P

K

j=1
↵j

⌘ . (18)

Applications: infinite dimensional generalisation is a Dirichlet process which is used
as a distribution on probability distributions. Very important in Bayesian nonparametric
analysis.

1.3.10 Cauchy distribution

X follows a Cauchy distribution (also known as a Lorentz distribution) with location param-
eter x0 and scale parameter �, if it has pdf

p(x) =
1

⇡�


1 +

⇣
x�x0
�

⌘2
� . (19)

X takes any real value x 2 (�1,1). The Cauchy distribution arises as the distribution of
the x intercept of a ray issuing from the point (x0, �) with a uniformly distributed angle. It
is also the distribution of the ratio of two independent zero-mean Normal distributions.

Applications: used to model distributions with sharp features. In a gravitational wave
context it is used as a model for lines in the spectral density of gravitational wave detectors,
for example in BayesLine (and hence BayesWave).

1.4 Properties of random variables

The pdf (or pmf) of a random variable tells us everything about the random variable. How-
ever, it is often convenient to work with a smaller number of quantities that summarise the
properties of the distribution. These characterise the ‘average’ value of a random variable
and the spread of the random variable about the average. We summarise a few of these quan-
tities here. They all rely on the notion of an expectation value, denoted E. The expectation
value of a function, T (X), of a discrete random variable X is defined by

E(T (X)) =
1X

i=1

pit(xi). (20)

A similar definition holds for continuous random variables by replacing the sum with an
integral

E(T (X)) =

Z 1

�1
p(x)t(x)dx. (21)
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❖ The constraint that the sum of the {xi}’s is unity means that realisations of a Dirichlet 
distribution are discrete probability distributions. Realisations of a Dirichlet process 
are continuous probability distributions.

❖ A Dirichlet process, X, is determined by a base distribution, P, and a concentration 
parameter, a, and is written X ~ DP(P, a).

❖ Formally, X is a Dirichlet process on the set S if for any measurable finite partition of 
S, S = {Bi}i=1n, the probability distribution generated by a realisation of X is

❖ For small a the realised distributions become increasingly discretized, and are 
concentrated at a small number of points.

❖ For large a the realised distributions become increasingly continuous and close to 
the base distribution.

Dirichlet processes
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Figure 48: Plots of the first few Wendland polynomial covariance functions. All these func-
tions have compact support, k(⌧) = 0 for ⌧ > 1. As the value of q increases the functions
become smoother near the origin.

easier to invert. Care must be taken when specifying the covariance function to ensure that
the function is positive definite (which is required of a GP): if the SE covariance function is
truncated, then the matrix formed from the new covariance function is not guaranteed to be
positive definite.

Nevertheless, it is possible to construct covariance functions which have the requisite
properties and satisfy the compact support condition in Eq. (153). These are typically based
on polynomials. We consider a series of polynomials proposed by [?], which we will refer
to as the Wendland polynomials. These have the property that they are positive definite
in R

D and are 2q-time di↵erentiable at the origin. Therefore the discrete parameter q is in
some sense analogous to the ⌘ hyperparameter of the Matérn covariance function in that it
controls the smoothness of the GP. Defining � to be

� =

�
D

2

⌫
+ q + 1 (154)

and where ⇥(x) denotes the Heaviside step function, the first few Wendland polynomials
kD, q(⌧) are given by,

kD, 0(⌧) = �2

f⇥(1 � ⌧)(1 � ⌧)� , (155)

kD, 1(⌧) = �2

f⇥(1 � ⌧)(1 � ⌧)�+1 [1 + (� + 1) ⌧ ] , (156)

kD, 2(⌧) =
�2

f

3
⇥(1 � ⌧)(1 � ⌧)�+2 [ 3 + (3� + 6) ⌧

+
�
�2 + 4� + 3

�
⌧ 2
⇤
, (157)

kD, 3(⌧) =
�2

f

15
⇥(1 � ⌧)(1 � ⌧)�+3

⇥
15 + (15� + 45) ⌧

+
�
6�2 + 36� + 45

�
⌧ 2

+
�
�3 + 9�2 + 23� + 15

�
⌧ 3
⇤
. (158)

The first few Wendland polynomials are plotted in Fig. 48. Other types of covariance
functions with compact support have also been proposed and explored in the literature (e.g.,
[?, ?, ?]), but we do not consider them in this paper.

11.4 Dirichlet Processes

(X(B1), X(B2), . . . , X(Bn)) ⇠ Dir(aP (B1), aP (B2), . . . , aP (Bn)) (159)
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Figure 49: Sample realisations of a Dirichlet process, X ⇠DP(N(0, 1), c), for c = 1 (top
row), c = 10 (middle row) and c = 100 (bottom row). Within each row, the figures show
three distinct realisations of the stated Dirichlet process.

X ~ DP(N(0,1),1)
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Figure 49: Sample realisations of a Dirichlet process, X ⇠DP(N(0, 1), c), for c = 1 (top
row), c = 10 (middle row) and c = 100 (bottom row). Within each row, the figures show
three distinct realisations of the stated Dirichlet process.

X ~ DP(N(0,1),10)
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Figure 49: Sample realisations of a Dirichlet process, X ⇠DP(N(0, 1), c), for c = 1 (top
row), c = 10 (middle row) and c = 100 (bottom row). Within each row, the figures show
three distinct realisations of the stated Dirichlet process.X ~ DP(N(0,1),100)



Dirichlet processes: example draws

Introduction to Statistics for GWs 215

pmf of F ~ DP(N(0,1000),1)

x

p(
x)

−3 −2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

pmf of F ~ DP(N(0,1000),1)

x

p(
x)

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

pmf of F ~ DP(N(0,1),1000)

x

p(
x)

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

pmf of F ~ DP(N(0,10000),1)

x

p(
x)

−2 −1 0 1 2

0
5

10
15

20

pmf of F ~ DP(N(0,10000),1)

x

p(
x)

−3 −2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

pmf of F ~ DP(N(0,1),10000)

x

p(
x)

−3 −2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 50: As in Figure 49, this Figures shows sample realisations of a Dirichlet process,
X ⇠DP(N(0, 1), c), for c = 1000 (top row) and c = 10000 (bottom row). Within each row,
the figures show three distinct realisations of the stated Dirichlet process.
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Figure 50: As in Figure 49, this Figures shows sample realisations of a Dirichlet process,
X ⇠DP(N(0, 1), c), for c = 1000 (top row) and c = 10000 (bottom row). Within each row,
the figures show three distinct realisations of the stated Dirichlet process.X ~ DP(N(0,1),10000)



❖ In practice, we rarely need the full probability distribution corresponding to a 
particular realisation of the Dirichlet process, but a sequence of samples, {xi}, from it. 
The distribution can be reconstructed from the set of samples if needed.

❖ There are several algorithms that can do this. One is the Chinese restaurant process.

❖ The thought experiment for the Chinese restaurant process is a restaurant with an 
infinite number of tables, each with an infinite number of seats. As each customer 
arrives, they may sit at an empty table, or join an existing table. The probability of 
joining an existing table is proportional to the number of people already at the table.

❖ To generate DP(P,a) from this process, x1 is simulated from P. For n  > 1:

• with probability a/(a+n-1) draw xn from P;

• with probability nx/(a+n-1), set xn = x, where nx is the number of previous 
observations of x.

❖ The Polya-Urn construction is closely related to this procedure.

Sampling Dirichlet processes



Stick breaking construction
❖ An alternative way to generate a realisation of a Dirichlet process is through the 

stick-breaking construction.

❖ The construction is based on successively breaking a stick into an arbitrarily large 
number of pieces, with break points determined by a Beta(1,a) distribution. The 
lengths of the stick segments then provide weights for point masses, at locations 
drawn from the base distribution.
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Figure 50: As in Figure 49, this Figures shows sample realisations of a Dirichlet process,
X ⇠DP(N(0, 1), c), for c = 1000 (top row) and c = 10000 (bottom row). Within each row,
the figures show three distinct realisations of the stated Dirichlet process.
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Dirichlet process: applications
❖ Widely used in Bayesian non-

parametric statistics as a prior for 
probability distributions.

❖ Example: B-spline knot locations. 
Use Dirichlet process as a prior 
for locations of knots for non-
parametric B-spline regression 
(Edwards & JG 2020).

❖ Applied analysis to obtain non-
parametric fit to Planck data.

❖ Exploring application to 
population inference and noise 
modelling for GW detectors.
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The freespline algorithm outperforms the
LEX algorithm in terms of average MSE for both
test functions here. Upon visual inspection, we find
exactly why this is the case. We see in Figure 4
that the LEX model manages to pick up the first lo-
cal extremum (minimum), which is large, but fails
to pick up the secondary local extremum (maxi-
mum), which is small. We also see in Figure 5 that
the LEX algorithm cannot handle sharp and abrupt
extrema.
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Fig. 4: One comparison of methods for the ExpSum
example.
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Fig. 5: One comparison of methods for the
Triangle example.

We have demonstrated that freespline out-
performs LEX when one extremum is small
(ExpSum), or when we have a sharp, and abrupt
extremum (Triangle). Additional benefits of
freespline is that it is publicly available on CRAN,
it provides credible regions which give a level of un-
certainty around the fitted curve, and that it can

handle more than two local extrema, which will be
demonstrated explicitly in the following sections.

3.2 Simulation Study

In this section, we run a comprehensive simulation
study, using the following three test functions from
DiMatteo et al. (2001):

1. The true function is a natural spline on [0, 1]
with internal knots (0.2, 0.6, 0.7) and coe�-
cients � = (20, 4, 6, 11, 6). Zero-mean Normal
noise with standard deviation � = 0.9 is added
to this curve.

2. The true function is f(x) = sin(x) +
2 exp(�30x2) for x 2 [�2, 2]. Zero-mean Nor-
mal noise with standard deviation � = 0.3 is
added to this curve.

3. The true function is a natural spline on [0, 1]
with internal knots (0.4, 0.4, 0.4, 0.4, 0.7) and
coe�cients � = (2,�5, 5, 2,�3,�1, 2). Zero-
mean Normal noise with standard deviation
� = 0.55 is added to this curve.

We run the freespline algorithm on 1,000 dif-
ferent noise realizations for each test function, at
sample sizes of n = (27, 28, 29), computing average
MSE, estimated standard errors, mean run-time,
and uniform coverage probabilities.. An example
of each function can be seen in Figure 6.

Results are presented in Tables 2 and 3. We see
that as n increases, MSE and SE decrease for all
test functions. We also see that computing time
roughly increases linearly with n, and that the
mode number of B-splines stays reasonably con-
stant when changing n. Note that these test func-
tions all have a signal-to-noise ratio (SNR) of ⇠ 3,

where SNR = sd(signal)
sd(noise) . We also present results for

SNR equal to 1 and 10 in Appendix 2.

Table 2: Average MSE with estimated standard
errors in brackets.

n = 27 n = 28 n = 29

1 0.0747 (0.0353) 0.0361 (0.0164) 0.0188 (0.0080)
2 0.0097 (0.0045) 0.0048 (0.0020) 0.0025 (0.0010)
3 0.0280 (0.0154) 0.0147 (0.0078) 0.0082 (0.0051)

One benefit of the freespline algorithm is its
ability to compute credible regions from posterior

8 Matthew C. Edwards, Jonathan R. Gair

crowave background (CMB) at microwave and in-
frared frequencies, with the aim of testing the-
ories of the early Universe. The mission was a
great achievement, providing a clear picture of an
extremely simple Universe (Akrami et al., 2018;
Aghanim et al., 2018).

However, CMB observations have highlighted
some puzzles in modern cosmology, most notice-
ably the inconsistencies in the local rate of ex-
pansion of the Universe inferred indirectly from
the CMB relative to the value measured locally
using Type Ia Supernovae (Bernal et al., 2016;
Reiss et al., 2016; Akrami et al., 2018; Aghanim
et al., 2018). One explanation is that the standard
model of cosmology, the so-called Lambda Cold
Dark Matter (⇤CDM) model (which is paramet-
ric), does not tell the full story. ⇤CDM is the sim-
plest model that could describe the Universe on
large scales, but it has shown remarkable agree-
ment with all astronomical measurements until
very recently. Departures from ⇤CDM could arise
from modifications in the true theory of gravity
away from general relativity, the existence of new
fields or particles or di↵erences in the properties
of the dark matter and dark energy components of
the Universe. It is therefore natural to ask whether
the CMB data are supporting the standard model
of cosmology, or whether conclusions are being bi-
ased by using a parametric fit rather than a non-
parametric one.

One interesting output from the Planck mis-
sion was the CMB temperature (TT) power spec-
trum, which shows the amplitude of temperature
anisotropies in the CMB as a function of the an-
gular scale, labelled by multipole index, l (which
is inversely proportional to angular scale). Infor-
mation contained in this spectrum (peaks and
troughs) can be used to precisely estimate under-
lying cosmological parameters and therefore allow
us to make statements about the early Universe
(Akrami et al., 2018).

In this section we use the freespline method
to fit the CMB TT power spectrum1, and com-
pare this to the “best fit” model, based on the
⇤CMD model. ⇤CMD uses a parametric model
described in (Akrami et al., 2018; Aghanim et al.,
2018), essentially using Gaussians to model peaks
in the spectrum. We demonstrate the usefulness of

1 These data are publicly available at http://pla.

esac.esa.int/pla/#cosmology.

nonparametric models for these data, showing that
we can get mostly consistent results with minimal
specifications, thus allowing the data to “speak for
itself”. Our fit can be seen in Figure 8.
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Fig. 8: Fitting the Planck CMB TT power spec-
trum. The ⇤CMD model is plotted as the blue line
and our posterior median curve is plotted as the
red dots.

In Figure 8, we can see that the “best fit” model
(blue curve), based on the ⇤CDM, fits the Planck
data extremely well, except at low values of the
multipole moment, where we expect a small rise in
temperature fluctuation. Our estimated curve (red
dots) fits the data well, and follows the ⇤CDM
model nearly perfectly, except at low values of the
multipole moment, where there is an up-tick in the
fit predicted by ⇤CDM. At low multipoles the ob-
served spectrum is more uncertain because these
correspond to large angular scales and there are
therefore fewer independent samples on the sky
that can be used to measure them. Models pre-
dict that the spectrum should have an up-tick at
low multipoles, but we see that this up-tick is not
supported by the data. There has been some de-
bate about whether the lowest (l = 2, 3) multipoles
are in fact significantly lower than predicted by
⇤CDM (see for example Bielewicz et al. (2004)).
This could be due to foreground contamination.
The fact that we find no evidence for the up-tick
may be evidence in support of this, which fitting
the parametric model cannot reveal.

Our fitted curve supports the notion of six
peaks in the TT spectrum, but not seven as
reported by the Planck Collaboration (Akrami
et al., 2018; Aghanim et al., 2018). We also see
some slight evidence that the first and second



Applications: Gravitational Waves

❖ Del Pozzo et al. (2018) used a 
Dirichlet Process Gaussian 
mixture model to represent 
source localisation posteriors 
generated by LALInference.

❖ The Dirichlet process was used 
to generate the centres of a set 
of Gaussian kernels that were 
superimposed used to 
represent the true posterior 
distribution.

12 W. Del Pozzo et al.
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Figure 3. Cumulative fractions of events with localization vol-
umes smaller than the abscissa value. The top panel shows the
50% credible volume CV0.5, the middle shows the 90% credi-
ble volume CV0.9 and the bottom shows the searched volume V⇤.
The 68% confidence interval for the cumulative distribution is en-
closed by the shaded regions; this does not include the inherent
uncertainty in the volume estimates.

can be be used to find the most probable source galaxies
within a matter of minutes of the LALInference analy-
sis finishing, making it useful for prompt multimessenger
follow-up activities.

We constructed localization volumes for a catalogue
of BNS signals appropriate for the early operation of the

advanced-detector era (Singer et al. 2014; Berry et al. 2015;
Farr et al. 2016). We have verified that the three-dimensional
localizations are well calibrated (cf. Cook et al. 2006; Sidery
et al. 2014b) and have confirmed that when distance is
marginalised out, these volumes reduce to sky areas that
are consistent with two-dimensional KDE results. Our cred-
ible volumes have the expected proportionality with SNR,
scaling roughly / %

�6
net.

Our results show that localizations for detections dur-
ing early observing runs would be ⇠ 104–105 Mpc3, corre-
sponding to ⇠ 102–103 potential host galaxies within the
GLADE catalogue (Dálya et al. 2018). Approximately half
of events have searched volumes which contain 102 galaxies
or fewer, and a few percent of events have searched volumes
which contain a single galaxy. Since our results do not in-
clude the e↵ects of calibration uncertainty, they would be
lower bounds for any actual detections: for the (O1-like) HL
recoloured data set, we find that the median 90% credible
volume is 5 ⇥ 104 Mpc3 and for the HL Gaussian data set
it is 4 ⇥ 104 Mpc3; moving ahead to the (O2-like) HLV sce-
nario, the median 90% credible volume is 1 ⇥ 105 Mpc3 for
the Gaussian data set. Greater sensitivity of the detectors
means that we can detect signals from a greater distance and
hence are sensitive to sources in a larger volume. However,
localization does improve as further detectors are added to
the network: the median 90% credible volume in the HLV
scenario for a two-detector network is 3 ⇥ 105 Mpc3 but for
a three-detector network it is 1⇥105 Mpc3. The localization
improves rapidly as the SNR of the signal increases, and the
best localization occurs when there is significant SNR from
each of the three detectors. Addition of further detectors,
such as KAGRA (Aso et al. 2013) or the proposed LIGO-
India detector (Unnikrishnan 2013; Abbott et al. 2017a),
could further improve localization and the prospects of iden-
tifying a counterpart.
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