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Making sense of data: introduction to statistics for gravitational
wave astronomy

Problem Sheet 2: Bayesian Statistics

IMPRS students taking this course should complete the questions in the first part of this
sheet and hand them in to be marked. The questions in the second part of the sheet,
labelled “Additional questions’, are for personal study and do not need to be handed in.

1. A motorist travels regularly from Berlin to Golm. On each occasion he chooses a
route at random from four possible routes. From experience, the probabilities of
completing the journey in under 1 hour via these routes labelled 1 to 4 are 0.2, 0.5,
0.8 and 0.9 respectively. Given that on a certain occasion they complete the journey
in under 1 hour, calculate the probability that they travelled on each of the possible
routes.

2. (a) Consider the general hypothesis testing problem

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1,

such that the union of Θ0 and Θ1 is the whole of the parameter space Θ.
Letting p0 and p1 denote the prior probabilities for the null hypothesis and the
alternative hypothesis respectively, show that the posterior probability of H0

is given by

P(H0|x) = P(θ ∈ Θ0|x) =
p0

p0 + p1/B01

,

where B01 denotes the Bayes factor of H0 to H1.

(b) Now suppose that we observe data x = {x1, . . . , xn}, such that

Xi ∼iid N(µ, σ2),

where σ2 is known. We wish to test

H0 : µ = µ0 vs H1 : µ = µ1.

Show that the Bayes factor is given by

B01 = exp

(
−n(µ0 − µ1)(µ0 + µ1 − 2x̄)

2σ2

)
.

Calculate the Bayes factor for H0 against H1 when µ0 = 0, µ1 = 1, σ2 = 1,
n = 9 and x̄ = 0.645. What is your conclusion? What happens as we increase
n, with all other values fixed?

(c) Finally, suppose that we observe data x = {x1, . . . , xn}, such that

Xi ∼iid N(µ, σ2),



as before. Now we want to test the hypotheses:

H0 : µ = µ0 vs H1 : µ 6= µ0.

We specify p(µ|H1) ∼ N(0, τ 2). Calculate the Bayes factor for H0 against
H1. Comment on the limiting case were we make the prior on µ under H1

increasingly vague, i.e., τ 2 →∞.

3. We observe data x = {x1, . . . , xm} from a multinomial distribution, X ∼MN(N,p),
and wish to make inference on the parameters p = {p1, . . . , pm} (note that

∑
i pi =

1). We set a prior on the unknown parameters p of the form

p ∼ Dir(α1, . . . , αm).

(a) Determine the corresponding posterior distribution for the parameters p.

(b) Calculate the Bayes estimate for the parameters, assuming a quadratic loss
function. [Hint: the Bayes estimate with quadratic loss function is the posterior
mean.]

(c) We throw a 6-sided die 60 times and record the number of times that we ob-
served the number i = 1, . . . , 6, which we denote by xi. Let pi denote the asso-
ciated probability of throwing the number i = 1, . . . , 6 and set p = {p1, . . . , p6}.
We observe the data x = {10, 12, 12, 8, 7, 11} and specify a Uniform prior on
p, which is Dir(α1, . . . , α6) for αi = 1 for i = 1, . . . , 6. Determine the posterior
mean for each pi.

4. Suppose that we wish to simulate observations from the Pareto distribution with
pdf

p(θ) =

{
axao
θa+1 for θ ≥ x0;
0 otherwise,

.

Derive the cumulative distribution function for θ and hence describe an algorithmic
procedure for sampling random variables from p(θ) using the method of inversion.

5. A biologist is interested in estimating the annual survival probability of a given
species of deer, denoted by φ. Data are collected via a radio-tagging experiment
which initially places radio-tags on a total of N animals in year 0. Let pt denote the
probability an individual dies within the interval (t− 1, t] for t = 1, . . . , T and pT+1

the probability that they survive until the end of the study. Assuming survivability
in each year is independent, and animals are independent of each other, we have

pt =


(1− φ) t = 1
(1− φ)φt−1 t = 2, . . . , T
φT t = T + 1

.

Let Xt denote the number of individuals that die in the interval (t − 1, t] for t =
1, . . . , T and XT+1 the number of individuals that survive until the end of the study.
The corresponding likelihood is

p(x|φ) =
N !∏T+1
t=1 xt!

T+1∏
t=1

pxtt .

Finally we specify the prior φ ∼Beta(α, β).



(a) Show that the posterior distribution for the survival probability is of the form

p(φ|x) ∼ Beta

(
α +

T+1∑
t=1

(t− 1)xt, β +
T∑
t=1

xt

)
.

(b) To obtain a set of sampled realisations from the Beta distribution of interest
the biologist intends to implement a rejection sampling algorithm. However,
due to their limited computational skills they are only able to simulate random
deviates from a U [a, b] distribution. Describe a rejection sampling algorithm
that the biologist can implement using their limited computational skills.

(c) We specify the prior φ ∼Beta(1, 1) and observe data such that the posterior
p(φ|x) ∼Beta(91, 9). We obtain the following posterior summary statistics for
φ: posterior mean E(φ) = 0.910, posterior standard deviation 0.028, posterior
median 0.913, 95% symmetric credible interval of (0.847, 0.958) and a 95%
highest posterior density interval of (0.832, 0.949). Without conducting an
analysis state why at least one of these summary statistics must be incorrect.

6. Suppose that we wish to use the Metropolis-Hastings algorithm to generate a sample
from N(0, σ2), and that we use the proposal q(x, y) = N(ax, τ 2) for −1 < a < 1.

(a) What is the corresponding acceptance probability α(x, y)?

(b) For what value of τ 2 would this particular sampler never reject the candidate
value?

(c) What happens if a = 0?

7. Consider a simplified model of PSD estimation. We assume that we have made
N observations of noise, ni, drawn from a zero mean Gaussian with common, but
unknown, standard deviation σ. The N + 1’th observation comprises noise, drawn
from the same distribution, and a signal, represented by a non-zero value of the
mean, A. Write down the combined posterior distribution for σ and A, using flat
priors. Marginalise over σ to obtain the posterior on A and comment on the result.

8. The Laser Interferometer Ground Observatory (LIGO) detected gravitational waves
for the first time in September 2015. LIGO has now completed three observing runs.
The first run (O1) lasted 3 months, during which time 3 signals from binary black
hole mergers were observed. The second observing run (O2) lasted 6 months. In
the first 5 months, one additional merger was observed, and then in the last months
5 further signals were detected. We may assume that the events are distributed
according to a homogeneous Poisson distribution with parameter λ with units of
yr−1. We are interested in inferring the value of λ. Prior to O1 the value of λ was
poorly constrained, with estimated values ranging from 0.01 to 1000.

(a) Consider the information available prior to the first observing run and con-
struct a conjugate prior for the rate parameter. Briefly justify your reasons for
constructing a prior in this way.

(b) Derive the posterior distribution for λ using the O1 observations. Report the
posterior mean, standard deviation, a 95% symmetric confidence interval and
plot the posterior distribution.

(c) What is the posterior probability that the rate is > 15?



(d) Re-analyse the O1 data using a Jeffreys prior; how do your results in (b) and
(c) change?

(e) Based on the posterior from the O1 data, what is the posterior predictive prob-
ability that we would see 6 or more events in O2? What is the posterior pre-
dictive probability that we would see 1 or fewer events in the first 5 months of
O2? What is the posterior predictive probability that we would see 5 or more
events in the last month of O2/during at least one month of O2? How are these
results affected by the choice of prior? Some authors have claimed that the
LIGO results provide evidence that the rate is not homogeneous in time. Based
on these results, do you agree?

(f) The third observing run, O3, started in April 2019 and lasted for one year.
Prior to the start of O3, you update the posterior distribution to use all of the
events from O1 and O2 (using one of the previous prior choices). Obtain the
corresponding posterior predictive distribution for the difference, |n2 − n1|, in
the number of events that will be observed in the first 6 months, n1, and the
last 6 months, n2, of O3. How large would the observed difference have to be
to provide evidence that the rate is changing with time? The actual observed
difference is 4. What do you conclude? Discuss other possible ways to address
the question ‘is the rate changing with time?’ within a Bayesian framework.



Additional questions

9. Let X1, . . . , Xn be independent and identically distributed random variables such
that Xi ∼ N(µ, σ2) for i = 1, . . . , n, where σ2 is known.

(a) Show that Jeffreys’ prior for µ is of the form p(µ) ∝ 1 for −∞ < µ <∞.

(b) Hence show that the posterior distribution for µ is also normal, with mean and
variance to be specified.

(c) Suppose that we observe data x1, . . . , x10 such that x̄ = 10.1. Assuming
that σ2 = 1, show that a 95% highest posterior density interval for µ is
(9.480, 10.720).

10. A chemist is interested in the maximum possible yield produced by a certain process.
Due to the large variability in the data, they assume that, given a scalar θ, each yield
xi, i = 1, . . . , n, is independent of the other yields and follows a uniform distribution
U [0, θ], so that

p(xi|θ) =
1

θ
, for 0 < xi < θ.

Before the chemist sees any data, they assume a Pareto prior distribution for θ, so
that

p(θ) =

{
axao
θa+1 for θ ≥ x0;
0 otherwise,

where a > 0 and xo > 0 are known parameters for the prior Pareto distribution,
specified by the chemist. Note that the mean of a Pareto distribution is given by
ax0/(a− 1), for a > 1, whilst the median if x02

1/a.

(a) Calculate the posterior distribution of θ.

(b) Suppose that the chemist specifies a Pareto prior distribution with a = 2,
x0 = 0.1. Consider observed data x = {x1, x2, x3} = {3, 10, 17}. Obtain the
posterior distribution and indicate how the expert’s beliefs have changed after
observing the data, using point summary statistics.

(c) Suppose instead that the chemist specified the alternative prior θ ∼ U(0, 15).
What are the implications for the given observed data?

11. Suppose that X1, . . . , Xn ∼iid N(µ, σ2) where both µ and σ2 are unknown. We
specify the priors

µ ∼ N(0, s2), and σ ∼ U [0, T ],

where T is “large”.

(a) Using a transformation of variables, calculate the corresponding prior on σ2.

(b) Calculate the posterior conditional distribution of µ and σ2 (i.e., the posterior
distribution for µ, treating σ2 as fixed, and the posterior distribution of σ2,
treating µ as fixed).

12. Radio-tagging data involves placing a radio-tag on a number of individuals and
(assuming no radio failures) recording the number of deaths that occur at a series of
successive “capture” times. We assume that only a single radio-tagging event occurs
where a total of n lambs are “tagged”. We let xt denote the number of sheep that are
subsequently recorded as having died within the interval (t−1, t] (assuming tagging



occurs at time 0), for t = 1, . . . , T . We let xT+1 denote the number of individuals
that survive until time T (i.e. the end of the study). The corresponding likelihood
function is a function of the survival probabilities of the sheep. We assume two
distinct survival probabilities: φ1 corresponding to first-year survival probability
and φa the “adult” survival probability (i.e. older than first-years). The likelihood
is given by

p(x|φ1, φa) ∝
T∏
i=1

pxii

where

pi =


1− φ1 i = 1
φ1(1− φa) i = 2
φ1φ

i−2
a (1− φa) i = 3, . . . , T

φ1φ
T−1
a i = T + 1

.

Without any prior information on φ1 or φa we set priors φ1 ∼ U [0, 1] and φa ∼ U [0, 1]
independently. Describe a Gibbs sampling algorithm for obtaining a sample from
the posterior distribution. Comment on the result.

13. Show that the Metropolis-Hastings algorithm for target distribution π(x) generates
a reversible Markov chain, such that for x 6= y

π(x)KH(x, y) = π(y)KH(y, x),

where KH(x, y) = q(y|x)α(x, y) and α(x, y) is the acceptance probability.

Hence show that ∫
π(x)KH(x, y) dx = π(y).


